Cyclicity of planar homoclinic loops and quadratic integrable systems

被引:54
作者
Han, MA
机构
[1] Department of Mathematics, Shanghai Jiaotong University
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1997年 / 40卷 / 12期
基金
中国国家自然科学基金;
关键词
homoclinic loop; bifurcation; limit cycle; cyclicity;
D O I
10.1007/BF02876370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general method for a homoclinic loop of planar Hamiltonian systems to bifurcate two or three limit cycles under perturbations is established. Certain conditions are given under which the cyclicity of a homoclinic loop equals 1 or 2. As an application to quadratic systems, it is proved that the cyclicity of homoclinic loops of quadratic integrable and non-Hamiltonian systems equals 2 except for one case.
引用
收藏
页码:1247 / 1258
页数:12
相关论文
共 15 条
[11]  
Roussarie R., 1986, BOL SOC BRAS MAT, V17, P67
[12]   EXAMPLE OF A QUADRATIC SYSTEM WITH 2 CYCLES APPEARING IN A HOMOCLINIC LOOP BIFURCATION [J].
ROUSSEAU, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 66 (01) :140-150
[13]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC CENTERS [J].
SHAFER, DS ;
ZEGELING, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (01) :48-70
[14]  
ZHANG Z, 1992, ANN MAT PUR APPL, V160, P181
[15]  
ZHU DM, 1989, CHINESE ANN MATH B, V10, P26