Cyclicity of planar homoclinic loops and quadratic integrable systems

被引:54
作者
Han, MA
机构
[1] Department of Mathematics, Shanghai Jiaotong University
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1997年 / 40卷 / 12期
基金
中国国家自然科学基金;
关键词
homoclinic loop; bifurcation; limit cycle; cyclicity;
D O I
10.1007/BF02876370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general method for a homoclinic loop of planar Hamiltonian systems to bifurcate two or three limit cycles under perturbations is established. Certain conditions are given under which the cyclicity of a homoclinic loop equals 1 or 2. As an application to quadratic systems, it is proved that the cyclicity of homoclinic loops of quadratic integrable and non-Hamiltonian systems equals 2 except for one case.
引用
收藏
页码:1247 / 1258
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1995, QUALITATIVE THEORY P
[2]  
CAI SL, 1992, PROCEEDINGS OF ASIAN MATHEMATICAL CONFERENCE 1990, P25
[3]  
Feng B, 1985, Acta Math Sinica, V28, P53
[4]  
GUCKENBEIMER J, 1983, NONLINEAR OSCILLATIO
[5]  
HAN M, 1993, SCI CHINA SER A, V23, P113
[6]  
Han M., 1994, Bifurcation Theory of Differential Equation
[7]  
HAN M, 1994, SCI CHINA SER A, V37, P1152
[8]   ON SADDLE-LOOP BIFURCATIONS OF LIMIT-CYCLES IN PERTURBATIONS OF QUADRATIC HAMILTONIAN-SYSTEMS [J].
HOROZOV, E ;
ILIEV, ID .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (01) :84-105
[9]  
ILIEV I, ADV DIFF EQS, V1, P689
[10]   SADDLE QUANTITIES AND APPLICATIONS [J].
JOYAL, P ;
ROUSSEAU, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (02) :374-399