The Cauchy problem for the Schrodinger equation in dimension three with concentrated nonlinearity

被引:41
作者
Adami, R
Dell'Antonio, G
Figari, R
Teta, A
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75231 Paris, France
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] SISSA, ISAS, Lab Interdisciplinare, I-34014 Trieste, Italy
[4] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy
[5] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 03期
关键词
Nonlinear Schrodinger Equation (NLSE); point interactions; nonlinear Dirac Delta potentials; existence and uniqueness in energy space;
D O I
10.1016/S0294-1449(02)00022-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Schrodinger equation in R-3 with nonlinearity concentrated in a finite set of points. We formulate the problem in the space of finite energy V, which is strictly larger than the standard H-1-space due to the specific singularity exhibited by the solutions. We prove local existence and, for a repulsive or weakly attractive nonlinearity, also global existence of the solutions. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:477 / 500
页数:24
相关论文
共 15 条
[1]  
Adami R, 1999, OPER THEOR, V108, P183
[2]   A class of nonlinear Schrodinger equations with concentrated nonlinearity [J].
Adami, R ;
Teta, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) :148-175
[3]  
Adams R. A., 1975, SOBOLEV SPACES
[4]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[5]  
CAZENAVE T, 1993, TEXTOS METODOS MATEM, V26
[6]  
CAZENAVE T, 1996, TEXTOS METODOS MATEM, V30
[7]  
Erdely A., 1954, Tables of Integral Transforms and Their Applications
[8]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[9]  
GORENFLO R, 1978, ABEL INTEGRAL EQUATI
[10]   INVARIANCE RESULTS FOR DELAY AND VOLTERRA-EQUATIONS IN FRACTIONAL ORDER SOBOLEV SPACES [J].
KAPPEL, F ;
KUNISCH, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :1-51