Order-by-disorder from bond-dependent exchange and intensity signature of nodal quasiparticles in a honeycomb cobaltate

被引:52
作者
Elliot, M. [1 ]
McClarty, P. A. [2 ]
Prabhakaran, D. [1 ]
Johnson, R. D. [3 ]
Walker, H. C. [4 ]
Manuel, P. [4 ]
Coldea, R. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford, England
[2] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
[3] UCL, Dept Phys & Astron, London, England
[4] Rutherford Appleton Lab, ISIS Facil, STFC, Didcot, Oxon, England
基金
英国科学技术设施理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
SPIN; EXCITATIONS; SYSTEMS; PHYSICS; PHASES;
D O I
10.1038/s41467-021-23851-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent theoretical proposals have argued that cobaltates with edge-sharing octahedral coordination can have significant bond-dependent exchange couplings thus offering a platform in 3d ions for such physics beyond the much-explored realisations in 4d and 5d materials. Here we present high-resolution inelastic neutron scattering data within the magnetically ordered phase of the stacked honeycomb magnet CoTiO3 revealing the presence of a finite energy gap and demonstrate that this implies the presence of bond-dependent anisotropic couplings. We also show through an extensive theoretical analysis that the gap further implies the existence of a quantum order-by-disorder mechanism that, in this material, crucially involves virtual crystal field fluctuations. Our data also provide an experimental observation of a universal winding of the scattering intensity in angular scans around linear band-touching points for both magnons and dispersive spin-orbit excitons, which is directly related to the non-trivial topology of the quasiparticle wavefunction in momentum space near nodal points. It was suggested that some 3d materials display bond-dependent exchange interactions, leading to exotic many-body effects. Here, using inelastic neutron scattering, the authors reveal such interactions in the stacked honeycomb magnet CoTiO3 and show how they induce a spectral gap and affect the Dirac magnon band structure.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]   Electric and magnetic properties of titanium-cobalt-oxide single crystals produced by floating zone melting with light heating [J].
Balbashov, A. M. ;
Mukhin, A. A. ;
Ivanov, V. Yu. ;
Iskhakova, L. D. ;
Voronchikhina, M. E. .
LOW TEMPERATURE PHYSICS, 2017, 43 (08) :965-970
[3]   Neutron scattering in the proximate quantum spin liquid α-RuCl3 [J].
Banerjee, Arnab ;
Yan, Jiaqiang ;
Knolle, Johannes ;
Bridges, Craig A. ;
Stone, Matthew B. ;
Lumsden, Mark D. ;
Mandrus, David G. ;
Tennant, David A. ;
Moessner, Roderich ;
Nagler, Stephen E. .
SCIENCE, 2017, 356 (6342) :1055-1058
[4]   Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet [J].
Bao, Song ;
Wang, Jinghui ;
Wang, Wei ;
Cai, Zhengwei ;
Li, Shichao ;
Ma, Zhen ;
Wang, Di ;
Ran, Kejing ;
Dong, Zhao-Yang ;
Abernathy, D. L. ;
Yu, Shun-Li ;
Wan, Xiangang ;
Li, Jian-Xin ;
Wen, Jinsheng .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Bernevig B. A., 2013, TOPOLOGICAL INSULATO
[6]   Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A2IrO3 [J].
Chaloupka, Jiri ;
Jackeli, George ;
Khaliullin, Giniyat .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)
[7]   Er2Ti2O7:: Evidence of quantum order by disorder in a frustrated antiferromagnet -: art. no. 020401 [J].
Champion, JDM ;
Harris, MJ ;
Holdsworth, PCW ;
Wills, AS ;
Balakrishnan, G ;
Bramwell, ST ;
Cizmár, E ;
Fennell, T ;
Gardner, JS ;
Lago, J ;
McMorrow, DF ;
Orendác, M ;
Orendácová, A ;
Paul, DM ;
Smith, RI ;
Telling, MTF ;
Wildes, A .
PHYSICAL REVIEW B, 2003, 68 (02)
[8]   ORDER-FROM-DISORDER PHENOMENA IN HEISENBERG ANTIFERROMAGNETS ON A TRIANGULAR LATTICE [J].
CHUBUKOV, AV ;
JOLICOEUR, T .
PHYSICAL REVIEW B, 1992, 46 (17) :11137-11140
[9]   FLUCTUATIONS IN SPIN NEMATICS [J].
CHUBUKOV, AV .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (06) :1593-1608
[10]  
Chun SH, 2015, NAT PHYS, V11, P462, DOI [10.1038/nphys3322, 10.1038/NPHYS3322]