A variational finite element method for source inversion for convective-diffusive transport

被引:59
作者
Akçelik, V
Biros, G
Ghattas, O [1 ]
Long, KR
Waanders, BV
机构
[1] Carnegie Mellon Univ, Mech Algorithms & Comp Lab, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Mech Algorithms & Comp Lab, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] Sandia Natl Labs, Livermore, CA 94551 USA
[5] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
D O I
10.1016/S0168-874X(03)00054-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of determining an arbitrary source in a time-dependent convective-diffusive transport equation, given a velocity field and pointwise measurements of the concentration. Applications that give rise to such problems include determination of groundwater or airborne pollutant sources from measurements of concentrations, and identification of sources of chemical or biological attacks. To address ill-posedness of the problem, we employ Tikhonov and total variation regularization. We present a variational formulation of the first-order optimality system, which includes the initial-boundary value state problem, the final-boundary value adjoint problem, and the space-time boundary value source problem. We discretize in the space-time volume using Galerkin finite elements. Several examples demonstrate the influence of the density of the sensor array, the effectiveness of total variation regularization for discontinuous sources, the invertibility of the source as the transport becomes increasingly convection-dominated, the ability of the space-time inversion formulation to track moving sources, and the optimal convergence rate of the finite element approximation. Published by Elsevier Science B.V.
引用
收藏
页码:683 / 705
页数:23
相关论文
共 13 条
[1]  
AKCELIK V, 2002, P IEEE ACM SC2002 C
[2]  
[Anonymous], 1987, FRONT APPL MATH, DOI DOI 10.1137/1.9780898717570
[3]  
BIROS G, 2000, PARALLEL NEWTON KR 1
[4]  
BIROS G, 2000, PARALLEL LAGRANGE 1
[5]   Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control [J].
Gunzburger, MD ;
Manservisi, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) :1481-1512
[6]   The velocity tracking problem for Navier-Stokes flows with bounded distributed controls [J].
Gunzburger, MD ;
Manservisi, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1913-1945
[7]   Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models [J].
Gurney, KR ;
Law, RM ;
Denning, AS ;
Rayner, PJ ;
Baker, D ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fan, S ;
Fung, IY ;
Gloor, M ;
Heimann, M ;
Higuchi, K ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Peylin, P ;
Prather, M ;
Pak, BC ;
Randerson, J ;
Sarmiento, J ;
Taguchi, S ;
Takahashi, T ;
Yuen, CW .
NATURE, 2002, 415 (6872) :626-630
[8]   Preconditioned all-at-once methods for large, sparse parameter estimation problems [J].
Haber, E ;
Ascher, UM .
INVERSE PROBLEMS, 2001, 17 (06) :1847-1864
[9]  
LONG K, 2003, IN PRESS LECT NOTES
[10]  
LONG K, 2002, 2002 ACTS WORKSH P B