Atomically Flat Zigzag Edges in Monolayer MoS2 by Thermal Annealing

被引:79
作者
Chen, Qu [1 ]
Li, Huashan [2 ]
Xu, Wenshuo [1 ]
Wang, Shanshan
Sawada, Hidetaka [1 ,3 ,4 ]
Allen, Christopher S. [1 ,4 ]
Kirkland, Angus I. [1 ,4 ]
Grossman, Jeffrey C. [2 ]
Warner, Jamie H. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo 1968558, Japan
[4] Diamond Light Source Ltd, Electron Phys Sci Imaging Ctr, Didcot OX11 0DE, Oxon, England
基金
欧洲研究理事会;
关键词
MoS2; TEM; edges; 2D materials; in situ heating; transition metal dichalcogenides; ELECTRONIC-STRUCTURE; NANORIBBONS; GRAPHENE; NANOCLUSTERS; RECONSTRUCTION; NANOCATALYSTS; NANOPARTICLES; SITES;
D O I
10.1021/acs.nanolett.7b02192
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The edges of 2D materials show novel electronic, magnetic, and optical properties, especially when reduced to nanoribbon widths. Therefore, methods to create atomically flat edges in 2D materials are essential for future exploitation. Atomically flat edges in 2D materials are found after brittle fracture or when electrically biasing, but a simple scalable approach for creating atomically flat periodic edges in monolayer 2D transition metal dichalcogenides has yet to be realized. Here, we show how heating monolayer MoS2 to 800 degrees C in vacuum produces atomically flat Mo terminated zigzag edges in nanoribbons. We study this at the atomic level using an ultrastable in situ heating holder in an aberration-corrected transmission electron microscope and discriminating Mo from S at the edge, revealing unique Mo terminations for all zigzag orientations that remain stable and atomically flat when cooling back to room temperature. Highly faceted MoS2 nanoribbon constrictions are produced with Mo rich edge structures that have theoretically predicted spin separated transport channels, which are promising for spin logic applications.
引用
收藏
页码:5502 / 5507
页数:6
相关论文
共 32 条
[1]   The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene [J].
Algara-Siller, Gerardo ;
Kurasch, Simon ;
Sedighi, Mona ;
Lehtinen, Ossi ;
Kaiser, Ute .
APPLIED PHYSICS LETTERS, 2013, 103 (20)
[2]   Plasmons on the edge of MoS2 nanostructures [J].
Andersen, Kirsten ;
Jacobsen, Karsten W. ;
Thygesen, Kristian S. .
PHYSICAL REVIEW B, 2014, 90 (16)
[3]   Atomic and electronic structure of MoS2 nanoparticles -: art. no. 085410 [J].
Bollinger, MV ;
Jacobsen, KW ;
Norskov, JK .
PHYSICAL REVIEW B, 2003, 67 (08)
[4]   One-dimensional metallic edge states in MoS2 -: art. no. 196803 [J].
Bollinger, MV ;
Lauritsen, JV ;
Jacobsen, KW ;
Norskov, JK ;
Helveg, S ;
Besenbacher, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :1-196803
[5]   Catalytic properties of single layers of transition metal sulfide catalytic materials [J].
Chianelli, Russell R. ;
Siadati, Mohammad H. ;
De la Rosa, Myriam Perez ;
Berhault, Gilles ;
Wilcoxon, Jess P. ;
Bearden, Roby, Jr. ;
Abrams, Billie L. .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2006, 48 (01) :1-41
[6]   MoS2 nanoribbons as promising thermoelectric materials [J].
Fan, D. D. ;
Liu, H. J. ;
Cheng, L. ;
Jiang, P. H. ;
Shi, J. ;
Tang, X. F. .
APPLIED PHYSICS LETTERS, 2014, 105 (13)
[7]   Emergence of One-Dimensional Wires of Free Carriers in Transition-Metal-Dichalcogenide Nanostructures [J].
Gibertini, Marco ;
Marzari, Nicola .
NANO LETTERS, 2015, 15 (09) :6229-6238
[8]   Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers [J].
Gutierrez, Humberto R. ;
Perea-Lopez, Nestor ;
Elias, Ana Laura ;
Berkdemir, Ayse ;
Wang, Bei ;
Lv, Ruitao ;
Lopez-Urias, Florentino ;
Crespi, Vincent H. ;
Terrones, Humberto ;
Terrones, Mauricio .
NANO LETTERS, 2013, 13 (08) :3447-3454
[9]  
Han W, 2014, NAT NANOTECHNOL, V9, P794, DOI [10.1038/NNANO.2014.214, 10.1038/nnano.2014.214]
[10]   Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects [J].
Han, Yang ;
Zhou, Jian ;
Dong, Jinming .
APPLIED SURFACE SCIENCE, 2015, 346 :470-476