Noise regularization removes correlation artifacts in single-cell RNA-seq data preprocessing

被引:9
作者
Zhang, Ruoyu [1 ]
Atwal, Gurinder S. [1 ]
Lim, Wei Keat [1 ]
机构
[1] Regeneron Pharmaceut, Tarrytown, NY 10591 USA
来源
PATTERNS | 2021年 / 2卷 / 03期
关键词
COEXPRESSION NETWORK; CONSTRUCTION; INFORMATION;
D O I
10.1016/j.patter.2021.100211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid advancement of single-cell RNA-sequencing (scRNA-seq) technology, many data-preprocessing methods have been proposed to address numerous systematic errors and technical variabilities inherent in this technology. While these methods have been demonstrated to be effective in recovering individual gene expression, the suitability to the inference of gene-gene associations and subsequent gene network reconstruction have not been systemically investigated. In this study, we benchmarked five representative scRNA-seq normalization/ imputation methods on Human Cell Atlas bone marrow data with respect to their impacts on inferred gene-gene associations. Our results suggested that a considerable amount of spurious correlations was introduced during the data-preprocessing steps due to oversmoothing of the raw data. We proposed a model-agnostic noise-regularization method that can effectively eliminate the correlation artifacts. The noise-regularized gene-gene correlations were further used to reconstruct a gene coexpression network and successfully revealed several known immune cell modules.
引用
收藏
页数:10
相关论文
共 37 条
[31]   A gene-coexpression network for global discovery of conserved genetic modules [J].
Stuart, JM ;
Segal, E ;
Koller, D ;
Kim, SK .
SCIENCE, 2003, 302 (5643) :249-255
[32]   Power analysis of single-cell RNA-sequencing experiments [J].
Svensson, Valentine ;
Natarajan, Kedar Nath ;
Ly, Lam-Ha ;
Miragaia, Ricardo J. ;
Labalette, Charlotte ;
Macaulay, Iain C. ;
Cvejic, Ana ;
Teichmann, Sarah A. .
NATURE METHODS, 2017, 14 (04) :381-+
[33]  
Szklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI [10.1093/nar/gky1131, 10.1093/nar/gkac1000]
[34]   Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments [J].
Tian, Luyi ;
Dong, Xueyi ;
Freytag, Saskia ;
Le Cao, Kim-Anh ;
Su, Shian ;
JalalAbadi, Abolfazl ;
Amann-Zalcenstein, Daniela ;
Weber, Tom S. ;
Seidi, Azadeh ;
Jabbari, Jafar S. ;
Naik, Shalin H. ;
Ritchie, Matthew E. .
NATURE METHODS, 2019, 16 (06) :479-+
[35]   Recovering Gene Interactions from Single-Cell Data Using Data Diffusion [J].
van Dijk, David ;
Sharma, Roshan ;
Nainys, Juozas ;
Yim, Kristina ;
Kathail, Pooja ;
Carr, Ambrose J. ;
Burdziak, Cassandra ;
Moon, Kevin R. ;
Chaffer, Christine L. ;
Pattabiraman, Diwakar ;
Bierie, Brian ;
Mazutis, Linas ;
Wolf, Guy ;
Krishnaswamy, Smita ;
Pe'er, Dana .
CELL, 2018, 174 (03) :716-+
[36]   Deep learning for inferring gene relationships from single-cell expression data [J].
Yuan, Ye ;
Bar-Joseph, Ziv .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) :27151-27158
[37]   Comparative Analysis of Single-Cell RNA Sequencing Methods [J].
Ziegenhain, Christoph ;
Vieth, Beate ;
Parekh, Swati ;
Reinius, Bjorn ;
Guillaumet-Adkins, Amy ;
Smets, Martha ;
Leonhardt, Heinrich ;
Heyn, Holger ;
Hellmann, Ines ;
Enard, Wolfgang .
MOLECULAR CELL, 2017, 65 (04) :631-+