Noise regularization removes correlation artifacts in single-cell RNA-seq data preprocessing

被引:9
作者
Zhang, Ruoyu [1 ]
Atwal, Gurinder S. [1 ]
Lim, Wei Keat [1 ]
机构
[1] Regeneron Pharmaceut, Tarrytown, NY 10591 USA
来源
PATTERNS | 2021年 / 2卷 / 03期
关键词
COEXPRESSION NETWORK; CONSTRUCTION; INFORMATION;
D O I
10.1016/j.patter.2021.100211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid advancement of single-cell RNA-sequencing (scRNA-seq) technology, many data-preprocessing methods have been proposed to address numerous systematic errors and technical variabilities inherent in this technology. While these methods have been demonstrated to be effective in recovering individual gene expression, the suitability to the inference of gene-gene associations and subsequent gene network reconstruction have not been systemically investigated. In this study, we benchmarked five representative scRNA-seq normalization/ imputation methods on Human Cell Atlas bone marrow data with respect to their impacts on inferred gene-gene associations. Our results suggested that a considerable amount of spurious correlations was introduced during the data-preprocessing steps due to oversmoothing of the raw data. We proposed a model-agnostic noise-regularization method that can effectively eliminate the correlation artifacts. The noise-regularized gene-gene correlations were further used to reconstruct a gene coexpression network and successfully revealed several known immune cell modules.
引用
收藏
页数:10
相关论文
共 37 条
  • [1] The EntOptLayout Cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signalling networks
    Agg, Bence
    Csaszar, Andrea
    Szalay-Beko, Mate
    Veres, Daniel V.
    Mizsei, Reka
    Ferdinandy, Peter
    Csermely, Peter
    Kovacs, Istvan A.
    [J]. BIOINFORMATICS, 2019, 35 (21) : 4490 - 4492
  • [2] Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
  • [3] [Anonymous], 2016, P INT C LEARN REPR
  • [4] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [5] Guidance for RNA-seq co-expression network construction and analysis: safety in numbers
    Ballouz, S.
    Verleyen, W.
    Gillis, J.
    [J]. BIOINFORMATICS, 2015, 31 (13) : 2123 - 2130
  • [6] TRAINING WITH NOISE IS EQUIVALENT TO TIKHONOV REGULARIZATION
    BISHOP, CM
    [J]. NEURAL COMPUTATION, 1995, 7 (01) : 108 - 116
  • [7] Bondy J.A., 2008, GTM
  • [8] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [9] The Gene Ontology Resource: 20 years and still GOing strong
    Carbon, S.
    Douglass, E.
    Dunn, N.
    Good, B.
    Harris, N. L.
    Lewis, S. E.
    Mungall, C. J.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Hartline, E.
    Fey, P.
    Thomas, P. D.
    Albou, L. P.
    Ebert, D.
    Kesling, M. J.
    Mi, H.
    Muruganujian, A.
    Huang, X.
    Poudel, S.
    Mushayahama, T.
    Hu, J. C.
    LaBonte, S. A.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Fexova, S.
    Garapati, P.
    Jones, T. E. M.
    Marygold, S. J.
    Millburn, G. H.
    Rey, A. J.
    Trovisco, V.
    dos Santos, G.
    Emmert, D. B.
    Falls, K.
    Zhou, P.
    Goodman, J. L.
    Strelets, V. B.
    Thurmond, J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Acencio, M. L.
    Kuiper, M.
    Laegreid, A.
    Logie, C.
    Lovering, R. C.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D330 - D338
  • [10] The transcriptional network for mesenchymal transformation of brain tumours
    Carro, Maria Stella
    Lim, Wei Keat
    Alvarez, Mariano Javier
    Bollo, Robert J.
    Zhao, Xudong
    Snyder, Evan Y.
    Sulman, Erik P.
    Anne, Sandrine L.
    Doetsch, Fiona
    Colman, Howard
    Lasorella, Anna
    Aldape, Ken
    Califano, Andrea
    Iavarone, Antonio
    [J]. NATURE, 2010, 463 (7279) : 318 - U68