Synthesis and dielectric investigations of bismuth sulfide particles filled PVA: Polypyrrole core-shell nanocomposites

被引:16
作者
Hebbar, Vidyashree [1 ]
Bhajantri, R. F. [1 ]
机构
[1] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2017年 / 224卷
关键词
Bismuth sulfide; Nanocomposite; PVA:Polypyrrole; Blend; Dielectric; SEM; COMPOSITE FILMS; CONSTANT; NANOSTRUCTURE; CONDUCTIVITY; IMPEDANCE; BEHAVIOR;
D O I
10.1016/j.mseb.2017.08.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High dielectric composites of bismuth sulfide (Bi2S3) filled in poly (vinyl alcohol) (PVA)/polypyrrole (PPy) blend were prepared. Fourier Transform Infrared Spectroscopic analysis infers the encapsulation of Bi2S3 particles by PVA: PPy matrix. The thermal activation is estimated using Coats and Redfern equation from thermogravimetric analysis results. SEM micrographs revealed that Bi2S3 filled PVA:PPy blend composite films possess smooth surface and homogeneous dispersion of particles. The frequency dependence of dielectric constant, loss tangent and electric modulus were analyzed. The characteristic relaxation times for dielectric loss within the composites are calculated. The AC conductivity is maximum for 8 wt% of bismuth sulfide particles. The dielectric parameters and AC conductivity are temperature dependent. The dielectric response parameter s follows the correlated barrier hopping model and accordingly effective barrier height (W-m) of the composite for 8 wt% Bi2S3 filled PVA: PPy are determined.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 43 条
  • [31] Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range
    Nambiar, Shruti
    Osei, Ernest K.
    Yeow, John T. W.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [32] Polypyrrole coating of tartaric acid-assisted synthesized Bi2S3 nanorods
    Ota, Jyotiranjan
    Srivastava, Suneel Kumar
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (33) : 12260 - 12264
  • [33] Universal frequency-dependent ac conductivity of conducting polymer networks
    Papathanassiou, A. N.
    Sakellis, I.
    Grammatikakis, J.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [34] Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F
    Radha, K. P.
    Selvasekarapandian, S.
    Karthikeyan, S.
    Hema, M.
    Sanjeeviraja, C.
    [J]. IONICS, 2013, 19 (10) : 1437 - 1447
  • [35] In Situ Synthesis, Characterization and Conductivity of Copper Sulphide/Polypyrrole/Polyvinyl Alcohol Blend Nanocomposite
    Ramesan, Manammel Thankappan
    [J]. POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2012, 51 (12) : 1223 - 1229
  • [36] The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films
    Riahi, M.
    Martinez-Tomas, C.
    Agouram, S.
    Boukhachem, A.
    Maghraoui-Meherzi, H.
    [J]. THIN SOLID FILMS, 2017, 626 : 9 - 16
  • [37] Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites
    Sengwa, R. J.
    Choudhary, Shobhna
    Sankhla, Sonu
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (11) : 1621 - 1627
  • [38] Dielectric properties of nanographite-filled PMMA composites prepared by in situ polymerization
    Singhi, Manasi
    Fahim, M.
    [J]. POLYMER COMPOSITES, 2012, 33 (05) : 675 - 682
  • [39] Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties
    Tamboli, Mohaseen S.
    Patel, Prakash K.
    Patil, Santosh S.
    Kulkarni, Milind V.
    Maldar, Noormahmad N.
    Kale, Bharat B.
    [J]. DALTON TRANSACTIONS, 2014, 43 (35) : 13232 - 13241
  • [40] Dielectric properties of nanosilica filled epoxy nanocomposites
    Veena, M. G.
    Renukappa, N. M.
    Shivakumar, Kunigal N.
    Seetharamu, S.
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (04): : 407 - 414