Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries

被引:59
|
作者
Wang, Xia [1 ]
Xiao, Ying [1 ]
Wang, Jianqiang [1 ]
Sun, Lingna [2 ]
Cao, Minhua [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Photoelect Electrophoton Convers, Key Lab Cluster Sci, Minist Educ China,Dept Chem, Beijing 100081, Peoples R China
[2] Shenzhen Univ, Coll Chem & Chem Engn, ShenZhen Key Lab Funct Polymer, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdenum dioxide; Graphene; Nitrogen-doping; Hybrid; Lithium ion batteries; BINDER-FREE ANODE; RATE CAPABILITY; HIGH-CAPACITY; NANOCOMPOSITE; NANOPARTICLES; SHEETS; NANOCRYSTALS; REDUCTION; NANOWIRES; COMPOSITE;
D O I
10.1016/j.jpowsour.2014.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile, environmentally friendly and low-cost synthesis strategy is demonstrated to fabricate a MoO2/N-doped graphene (MoO2/N-GNS) hybrid, in which MoO2 nanoparticles (NPs) are uniformly dispersed on N-GNS sheets by Mo-N chemical bond formed between MoO2 and N-GNS. As an anode material in lithium ion batteries, the MoO2/N-GNS hybrid possesses superior rate capability, excellent cycling performance as well as high reversible capacity. A reversible capacity of 1138.5 mA h g(-1) is maintained after 60 cycles at a current density of 100 mA g(-1), and even at a high current density of 1000 mA g(-1), the specific capacity of 873.7 rnA h g(-1) can be obtained after 60 cycles. The superior electrochemical performance of the MoO2/N-GNS hybrid can be attributed to the synergistic effects of nitrogen-doping, flexible and conductive GNS, and MoO2 NPs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 50 条
  • [41] Review-Rational Design of Nitrogen-doped Graphene as Anode Material for Lithium-ion Batteries
    Jauja-Ccana, Victor Raul
    La-Torre-Riveros, Lyda
    Cordova-Huaman, Allison
    Huayta, Giancarlos
    Manfredy, Luigi
    Naupa, Alexander
    Isaacs, Mauricio
    La Rosa-Toro, Adolfo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (04)
  • [42] Molybdenum Disulfide Nanosheets Interconnected Nitrogen-Doped Reduced Graphene Oxide Hydrogel: A High-Performance Heterostructure for Lithium-Ion Batteries
    Lingappan, Niranjanmurthi
    Kang, Dae Joon
    ELECTROCHIMICA ACTA, 2016, 193 : 128 - 136
  • [43] Carbon-coated nitrogen doped SiOx anode material for high stability lithium ion batteries
    Jin, Chenxin
    Dan, Jianglei
    Zou, Yue
    Xu, Guojun
    Yue, Zhihao
    Li, Xiaomin
    Sun, Fugen
    Zhou, Lang
    Wang, Li
    CERAMICS INTERNATIONAL, 2021, 47 (20) : 29443 - 29450
  • [44] Two Dimensional Coordination Polymer Derived Nitrogen-Doped Carbon/ZnO Nanocomposites as High Performance Anode Material of Lithium-Ion Batteries
    Wen Hao
    Shi Chang-Dong
    Hu Yao
    Rong Hong-Ren
    Sha Yan-Yong
    Liu Hong-Jiang
    Zhang Han-Ping
    Liu Qi
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (01) : 50 - 58
  • [45] Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries
    Xiong, Dongbin
    Li, Xifei
    Bai, Zhimin
    Shan, Hui
    Fan, Linlin
    Wu, Chunxia
    Li, Dejun
    Lu, Shigang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) : 10643 - 10651
  • [46] NiO/Graphene Nanocomposite as Anode Material for Lithium-Ion Batteries
    Zhu, Yun-Guang
    Cao, Gao-Shao
    Xie, Jian
    Zhu, Tie-Jun
    Zhao, Xin-Bing
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (01) : 35 - 40
  • [47] Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries
    Qian, Chen
    Guo, Ping
    Zhang, Xiue
    Zhao, Rongfang
    Wu, Qianhui
    Huan, Long
    Shen, Xiao
    Chen, Ming
    RSC ADVANCES, 2016, 6 (96): : 93519 - 93524
  • [48] Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode
    Du, Meng
    Sun, Jing
    Chang, Jie
    Yang, Fan
    Shi, Liangjing
    Gao, Lian
    RSC ADVANCES, 2014, 4 (80) : 42412 - 42417
  • [49] Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
    Huo, Kaifu
    An, Weili
    Fu, Jijiang
    Gao, Biao
    Wang, Lei
    Peng, Xiang
    Cheng, Gary J.
    Chu, Paul K.
    JOURNAL OF POWER SOURCES, 2016, 324 : 233 - 238
  • [50] NiO-graphene hybrid as an anode material for lithium ion batteries
    Mai, Y. J.
    Shi, S. J.
    Zhang, D.
    Lu, Y.
    Gu, C. D.
    Tu, J. P.
    JOURNAL OF POWER SOURCES, 2012, 204 : 155 - 161