Multicritical points and crossover mediating the strong violation of universality: Wang-Landau determinations in the random-bond d=2 Blume-Capel model

被引:62
|
作者
Malakis, A. [1 ]
Berker, A. Nihat [2 ,3 ]
Hadjiagapiou, I. A. [1 ]
Fytas, N. G. [1 ]
Papakonstantinou, T. [1 ]
机构
[1] Univ Athens, Sect Solid State Phys, Dept Phys, GR-15784 Athens, Greece
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
RENORMALIZATION-GROUP CALCULATION; 1ST-ORDER PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; ISING-MODEL; TRIPLET IONS; TRICRITICAL POINTS; POTTS MODELS; SYSTEMS; TEMPERATURE; EXPONENTS;
D O I
10.1103/PhysRevE.81.041113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase-transition regime of the pure model. For the random-bond version several disorder strengths are considered. We present phase diagram points of both pure and random versions and for a particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared to those of the random model. Accepting, for the weak random version, the assumption of the double-logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-state structure of the random-bond version.
引用
收藏
页数:11
相关论文
共 6 条
  • [1] Wang-Landau study of the 2d random-bond Blume-Capel model
    Malakis, A.
    Berker, A. Nihat
    Hadjiagapiou, I. A.
    Fytas, N. G.
    PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009), 2010, 3 (03): : 1443 - 1446
  • [2] Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness
    Malakis, A.
    Berker, A. Nihat
    Hadjiagapiou, I. A.
    Fytas, N. G.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [3] Universality aspects of the d=3 random-bond Blume-Capel model
    Malakis, A.
    Berker, A. Nihat
    Fytas, N. G.
    Papakonstantinou, T.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [4] Universality from disorder in the random-bond Blume-Capel model
    Fytas, N. G.
    Zierenberg, J.
    Theodorakis, P. E.
    Weigel, M.
    Janke, W.
    Malakis, A.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [5] Uncovering the secrets of the 2D random-bond Blume-Capel model
    Malakis, A.
    Berker, A. Nihat
    Hadjiagapiou, I. A.
    Fytas, N. G.
    Papakonstantinou, T.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (15) : 2930 - 2933
  • [6] Universality aspects of the 2d random-bond Ising and 3d Blume-Capel models
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (02)