Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet

被引:60
作者
Winzell, M. Sorhede
Brand, C. L.
Wierup, N.
Sidelmann, U. G.
Sundler, F.
Nishimura, E.
Ahren, B.
机构
[1] Lund Univ, Div Med, Dept Clin Sci, BMC, Lund 22184, Sweden
[2] Novo Nordisk, Discovery, Malov, Denmark
[3] Lund Univ, Dept Expt Med Sci, S-22100 Lund, Sweden
关键词
alpha cell; beta cell; diabetes treatment; glucagon; glucose tolerance; glycaemia; insulin secretion; insulin sensitivity; islet; type; 2; diabetes;
D O I
10.1007/s00125-007-0675-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis Increased glucagon secretion predicts deterioration of glucose tolerance, and high glucagon levels contribute to hyperglycaemia in type 2 diabetes. Inhibition of glucagon action may therefore be a potential novel target to reduce hyperglycaemia. Here, we investigated whether chronic treatment with a glucagon receptor antagonist (GRA) improves islet dysfunction in female mice on a high-fat diet (HFD). Materials and methods After 8 weeks of HFD, mice were treated with a small molecule GRA ( 300 mg/kg, gavage once daily) for up to 30 days. Insulin secretion was studied after oral and intravenous administration of glucose and glucagon secretion after intravenous arginine. Islet morphology was examined and insulin secretion and glucose oxidation were measured in isolated islets. Results Fasting plasma glucose levels were reduced by GRA (6.0 +/- 0.2 vs 7.4 +/- 0.5 mmol/l; p= 0.017). The acute insulin response to intravenous glucose was augmented ( 1,300 +/- 110 vs 790 +/- 64 pmol/l; p < 0.001). The early insulin response to oral glucose was reduced in mice on HFD + GRA ( 1,890 +/- 160 vs 3,040 +/- 420 pmol/ l; p= 0.012), but glucose excursions were improved. Intravenous arginine significantly increased the acute glucagon response ( 129 +/- 12 vs 36 +/- 6 ng/l in controls; p < 0.01), notably without affecting plasma glucose. GRA caused a modest increase in alpha cell mass, while beta cell mass was similar to that in mice on HFD + vehicle. Isolated islets displayed improved glucose-stimulated insulin secretion after GRA treatment (0.061 +/- 0.007 vs 0.030 +/- 0.004 pmol islet(-1) h(-1) at 16.7 mmol/l glucose; p < 0.001), without affecting islet glucose oxidation. Conclusions/interpretation Chronic glucagon receptor antagonism in HFD-fed mice improves islet sensitivity to glucose and increases insulin secretion, suggesting improvement of key defects underlying impaired glucose tolerance and type 2 diabetes.
引用
收藏
页码:1453 / 1462
页数:10
相关论文
共 46 条
[1]   Dissociated insulinotropic sensitivity to glucose and carbachol in high-fat diet-induced insulin resistance in C57BL/6J mice [J].
Ahren, B ;
Simonsson, E ;
Scheurink, AJW ;
Mulder, H ;
Myrsen, U ;
Sundler, F .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1997, 46 (01) :97-106
[2]   IMMUNOREACTIVE GLUCAGON (IRG) RESPONSES TO INTRAVENOUS GLUCOSE IN PREDIABETES AND DIABETES AMONG PIMA INDIANS AND NORMAL CAUCASIANS [J].
ARONOFF, SL ;
BENNETT, PH ;
UNGER, RH .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1977, 44 (05) :968-972
[3]   ROLE OF HYPERGLUCAGONEMIA IN MAINTENANCE OF INCREASED RATES OF HEPATIC GLUCOSE OUTPUT IN TYPE-II DIABETICS [J].
BARON, AD ;
SCHAEFFER, L ;
SHRAGG, P ;
KOLTERMAN, OG .
DIABETES, 1987, 36 (03) :274-283
[4]   Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis [J].
Basu, R ;
Chandramouli, V ;
Dicke, B ;
Landau, B ;
Rizza, R .
DIABETES, 2005, 54 (07) :1942-1948
[5]   PHYSIOLOGIC EVALUATION OF FACTORS CONTROLLING GLUCOSE-TOLERANCE IN MAN - MEASUREMENT OF INSULIN SENSITIVITY AND BETA-CELL GLUCOSE SENSITIVITY FROM THE RESPONSE TO INTRAVENOUS GLUCOSE [J].
BERGMAN, RN ;
PHILLIPS, LS ;
COBELLI, C .
JOURNAL OF CLINICAL INVESTIGATION, 1981, 68 (06) :1456-1467
[6]  
BEUERS U, 1990, BIOCHEM INT, V21, P405
[7]   Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits [J].
Brand, CL ;
Jorgensen, PN ;
Svendsen, I ;
Holst, JJ .
DIABETES, 1996, 45 (08) :1076-1083
[8]   ROLE OF GLUCAGON IN MAINTENANCE OF EUGLYCEMIA IN FED AND FASTED RATS [J].
BRAND, CL ;
JORGENSEN, PN ;
KNIGGE, U ;
WARBERG, J ;
SVENDSEN, I ;
KRISTENSEN, JS ;
HOLST, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1995, 269 (03) :E469-E477
[9]   IMMUNONEUTRALIZATION OF ENDOGENOUS GLUCAGON WITH MONOCLONAL GLUCAGON ANTIBODY NORMALIZES HYPERGLYCEMIA IN MODERATELY STREPTOZOTOCIN-DIABETIC RATS [J].
BRAND, CL ;
ROLIN, B ;
JORGENSEN, PN ;
SVENDSEN, I ;
KRISTENSEN, JS ;
HOLST, JJ .
DIABETOLOGIA, 1994, 37 (10) :985-993
[10]  
Cherrington A D, 1978, Biochem Soc Symp, P31