Convolution integral for fractional diffusion equation

被引:2
作者
Razminia, Kambiz [1 ,3 ]
Razminia, Abolhassan [2 ]
机构
[1] Persian Gulf Univ, Fac Intelligent Syst Engn & Data Sci, Dept Elect Engn, Dynam Syst & Control DSC Res Lab, Bushehr, Iran
[2] Persian Gulf Univ, Fac Intelligent Syst Engn & Data Sci, Dept Elect Engn, Bushehr, Iran
[3] Imperial Coll London, London, England
关键词
Fractional diffusion equation (FDE); Anomalous diffusion; Convolution integral; FRACTURED RESERVOIRS; MODEL;
D O I
10.1016/j.chaos.2021.111728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A modified version of the classical diffusion equation, called the fractional diffusion equation (FDE), has been developed to describe anomalous fluid flow through porous media. Since the FDE does not contain the rate as the input of the well-reservoir system, in this paper, we re-develop the FDE containing both rate (input) and pressure (output). Based on the new FDE, we show that the conventional convolution integral can still be used to relate the rate and pressure in reservoirs with anomalous behavior. A prac-tical application of the convolution integral and how to use it in practice is presented using a synthetic example. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[32]   An exact solution of a limit case Stefan problem governed by a fractional diffusion equation [J].
Voller, V. R. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (23-24) :5622-5625
[33]   Fractional anisotropic diffusion equation in cylindrical brush model [J].
Sharaf, M. K. ;
El-Shewy, E. K. ;
Zahran, M. A. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01) :1416-1420
[34]   On the Fractional Diffusion-Advection Equation for Fluids and Plasmas [J].
Zimbardo, Gaetano ;
Perri, Silvia .
FLUIDS, 2019, 4 (02)
[35]   Fractional nonlinear diffusion equation and first passage time [J].
Wang, Jun ;
Zhang, Wen-Jun ;
Liang, Jin-Rong ;
Xiao, Han-Bin ;
Ren, Fu-Yao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (04) :764-772
[36]   Symmetry classification of time-fractional diffusion equation [J].
Naeem, I. ;
Khan, M. D. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :560-570
[37]   Solutions for a sorption process governed by a fractional diffusion equation [J].
Lenzi, E. K. ;
dos Santos, M. A. F. ;
Vieira, D. S. ;
Zola, R. S. ;
Ribeiro, H. V. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 :32-41
[38]   Fractional Diffusion Equation in Cylindrical Symmetry: A New Derivation [J].
Zahran, Mohsen A. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (09) :553-556
[39]   Fractional Diffusion Equation and Impedance Spectroscopy of Electrolytic Cells [J].
Lenzi, E. K. ;
Evangelista, L. R. ;
Barbero, G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (33) :11371-11374
[40]   Solution for a Space-time Fractional Diffusion Equation [J].
Liu, Qiyu ;
Lv, Longjin .
PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 :180-184