MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SIGN-CHANGING POTENTIAL

被引:0
作者
Wang, Ruimeng [1 ]
Wang, Kun [1 ]
Teng, Kaimin [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; symmetric mountain pass theorem; Cerami condition; SCHRODINGER-EQUATION; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS; SCALAR FIELD; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the quasilinear elliptic equation -Delta(p)u - (Delta(p)u(2))u + V(x)vertical bar u vertical bar(p-2)u = g(x, u), x is an element of R-N, where the potential V (x) and the nonlinearity g (x, u) are allowed to be sign-changing. Under some suitable assumptions on V and g, we obtain the multiplicity of solutions by using minimax methods.
引用
收藏
页数:19
相关论文
共 27 条
[1]  
Alves C. O., 2011, P EDINBURGH MATH SOC, V54, P1
[2]  
Alves CO, 2015, ACTA APPL MATH, V136, P91, DOI 10.1007/s10440-014-9942-8
[3]  
Alves CO, 2009, ADV DIFFERENTIAL EQU, V14, P911
[4]  
[Anonymous], 1997, Minimax theorems
[5]  
[Anonymous], 1986, CBMS REG C SER MATH
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]  
Bartsch T., 2005, HDB DIFFERENTIAL EQU, V2
[8]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226