Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models

被引:35
作者
Lu, Haibo [1 ]
Li, Shihua [1 ]
Ma, Minna [1 ]
Bastrikov, Vladislav [2 ]
Chen, Xiuzhi [1 ]
Ciais, Philippe [2 ]
Dai, Yongjiu [1 ]
Ito, Akihiko [3 ]
Ju, Weimin [4 ]
Lienert, Sebastian [5 ,6 ]
Lombardozzi, Danica [7 ]
Lu, Xingjie [1 ]
Maignan, Fabienne [2 ]
Nakhavali, Mahdi [8 ]
Quine, Timothy [9 ]
Schindlbacher, Andreas [10 ]
Wang, Jun [4 ,11 ]
Wang, Yingping [12 ,13 ]
Warlind, David [14 ]
Zhang, Shupeng [1 ]
Yuan, Wenping [1 ]
机构
[1] Sun Yat Sen Univ, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Sch Atmospher Sci, Zhuhai 519082, Guangdong, Peoples R China
[2] CEA, CNRS, UVSQ, Lab Sci Climat & EnvironM,LSCE,IPSL, F-91191 Gif Sur Yvette, France
[3] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan
[4] Nanjing Univ, Int Inst Earth Syst Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Peoples R China
[5] Univ Bern, Climate & Environm Phys Phys Inst, Bern, Switzerland
[6] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[7] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[8] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
[9] Univ Exeter, Dept Geog, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England
[10] Fed Res & Training Ctr Forests Nat Hazards & Land, Dept Forest Ecol, A-1131 Vienna, Austria
[11] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[12] CSIRO, Oceans & Atmosphere, Private Bag 1, Aspendale, Vic 3195, Australia
[13] Chinese Acad Sci, South China Bot Garden, Guangzhou 510650, Peoples R China
[14] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
关键词
benchmark; carbon cycling; global soil respiration; machine learning; terrestrial ecosystem models; EARTH SYSTEM MODELS; TEMPERATURE SENSITIVITY; CARBON; VEGETATION; NITROGEN; ROOT; DECOMPOSITION; PRODUCTIVITY; FEEDBACKS; EMISSIONS;
D O I
10.1088/1748-9326/abf526
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The CO2 efflux from soil (soil respiration (SR)) is one of the largest fluxes in the global carbon (C) cycle and its response to climate change could strongly influence future atmospheric CO2 concentrations. Still, a large divergence of global SR estimates and its autotrophic (AR) and heterotrophic (HR) components exists among process based terrestrial ecosystem models. Therefore, alternatively derived global benchmark values are warranted for constraining the various ecosystem model output. In this study, we developed models based on the global soil respiration database (version 5.0), using the random forest (RF) method to generate the global benchmark distribution of total SR and its components. Benchmark values were then compared with the output of ten different global terrestrial ecosystem models. Our observationally derived global mean annual benchmark rates were 85.5 +/- 40.4 (SD) Pg C yr(-1) for SR, 50.3 +/- 25.0 (SD) Pg C yr(-1) for HR and 35.2 Pg C yr(-1) for AR during 1982-2012, respectively. Evaluating against the observations, the RF models showed better performance in both of SR and HR simulations than all investigated terrestrial ecosystem models. Large divergences in simulating SR and its components were observed among the terrestrial ecosystem models. The estimated global SR and HR by the ecosystem models ranged from 61.4 to 91.7 Pg C yr(-1) and 39.8 to 61.7 Pg C yr(-1), respectively. The most discrepancy lays in the estimation of AR, the difference (12.0-42.3 Pg C yr(-1)) of estimates among the ecosystem models was up to 3.5 times. The contribution of AR to SR highly varied among the ecosystem models ranging from 18% to 48%, which differed with the estimate by RF (41%). This study generated global SR and its components (HR and AR) fluxes, which are useful benchmarks to constrain the performance of terrestrial ecosystem models.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models [J].
Anav, A. ;
Friedlingstein, P. ;
Kidston, M. ;
Bopp, L. ;
Ciais, P. ;
Cox, P. ;
Jones, C. ;
Jung, M. ;
Myneni, R. ;
Zhu, Z. .
JOURNAL OF CLIMATE, 2013, 26 (18) :6801-6843
[2]   New Techniques and Data for Understanding the Global Soil Respiration Flux [J].
Bond-Lamberty, Ben .
EARTHS FUTURE, 2018, 6 (09) :1176-1180
[3]   Globally rising soil heterotrophic respiration over recent decades [J].
Bond-Lamberty, Ben ;
Bailey, Vanessa L. ;
Chen, Min ;
Gough, Christopher M. ;
Vargas, Rodrigo .
NATURE, 2018, 560 (7716) :80-+
[4]  
Bradford MA, 2016, NAT CLIM CHANGE, V6, P751, DOI [10.1038/NCLIMATE3071, 10.1038/nclimate3071]
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   How tree roots respond to drought [J].
Brunner, Ivano ;
Herzog, Claude ;
Dawes, Melissa A. ;
Arend, Matthias ;
Sperisen, Christoph .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[7]   Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China [J].
Chen, Yang ;
Xia, Jiangzhou ;
Liang, Shunlin ;
Feng, Jinming ;
Fisher, Joshua B. ;
Li, Xin ;
Li, Xianglan ;
Liu, Shuguang ;
Ma, Zhuguo ;
Miyata, Akira ;
Mu, Qiaozhen ;
Sun, Liang ;
Tang, Jianwei ;
Wang, Kaicun ;
Wen, Jun ;
Xue, Yueju ;
Yu, Guirui ;
Zha, Tonggang ;
Zhang, Li ;
Zhang, Qiang ;
Zhao, Tianbao ;
Zhao, Liang ;
Yuan, Wenping .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :279-293
[8]   Random forests for classification in ecology [J].
Cutler, D. Richard ;
Edwards, Thomas C., Jr. ;
Beard, Karen H. ;
Cutler, Adele ;
Hess, Kyle T. .
ECOLOGY, 2007, 88 (11) :2783-2792
[9]   Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].
Davidson, EA ;
Janssens, IA .
NATURE, 2006, 440 (7081) :165-173
[10]   Methods to account for spatial autocorrelation in the analysis of species distributional data:: a review [J].
Dormann, Carsten F. ;
McPherson, Jana M. ;
Araujo, Miguel B. ;
Bivand, Roger ;
Bolliger, Janine ;
Carl, Gudrun ;
Davies, Richard G. ;
Hirzel, Alexandre ;
Jetz, Walter ;
Kissling, W. Daniel ;
Kuehn, Ingolf ;
Ohlemueller, Ralf ;
Peres-Neto, Pedro R. ;
Reineking, Bjoern ;
Schroeder, Boris ;
Schurr, Frank M. ;
Wilson, Robert .
ECOGRAPHY, 2007, 30 (05) :609-628