Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions

被引:12
作者
Phuangthong, Nawapol [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
Nonlaopon, Kamsing [4 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
关键词
fractional differential equations and inclusions; Hilfer fractional derivative; Riemann– Liouville fractional derivative; Caputo fractional derivative; boundary value problems; existence and uniqueness; fixed point theory;
D O I
10.3390/math9060615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present research, we study boundary value problems for fractional integro-differential equations and inclusions involving the Hilfer fractional derivative. Existence and uniqueness results are obtained by using the classical fixed point theorems of Banach, Krasnosel'skii, and Leray-Schauder in the single-valued case, while Martelli's fixed point theorem, a nonlinear alternative for multivalued maps, and the Covitz-Nadler fixed point theorem are used in the inclusion case. Examples are presented to illustrate our results.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Mixed sequential type pantograph fractional integro-differential equations with non-local boundary conditions [J].
M. Latha Maheswari ;
K. S. Keerthana Shri ;
K. Ravikumar .
SeMA Journal, 2024, 81 (4) :707-727
[32]   Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions [J].
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed ;
Ahmad, Bashir .
FRACTAL AND FRACTIONAL, 2019, 3 (02) :1-20
[33]   NONLOCAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Stanek, Svatoslav .
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 54 :99-115
[34]   Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations [J].
Nuchpong, Cholticha ;
Ntouyas, Sotiris K. ;
Vivek, Devaraj ;
Tariboon, Jessada .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[35]   On ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions [J].
Arul, Ramasamy ;
Karthikeyan, Panjayan ;
Karthikeyan, Kulandhaivel ;
Geetha, Palanisamy ;
Alruwaily, Ymnah ;
Almaghamsi, Lamya ;
El-hady, El-sayed .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[36]   A Study of Coupled Systems of ψ-Hilfer Type Sequential Fractional Differential Equations with Integro-Multipoint Boundary Conditions [J].
Samadi, Ayub ;
Nuchpong, Cholticha ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[37]   NONLOCAL INITIAL VALUE PROBLEMS FOR HADAMARD-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) :1043-1068
[38]   Existence and Ulam-Hyers Stability Results for a Class of Fractional Integro-Differential Equations Involving Nonlocal Fractional Integro-Differential Boundary Conditions [J].
Haddouchi, Faouzi .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
[39]   Existence and Uniqueness of Solutions for Nonlinear Fractional Integro-Differential Equations with Nonlocal Boundary Conditions [J].
Mardanov, M. J. ;
Sharifov, Y. A. ;
Aliyev, H. N. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02) :726-735
[40]   Existence result for nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions in Banach spaces [J].
Seba, Djamila ;
Rebai, Hamza ;
Henderson, Johnny .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) :141-147