Cascade of phases in turbulent flows

被引:12
作者
Cheverry, Christophe [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2006年 / 134卷 / 01期
关键词
fluid mechanics; Euler and Navier-Stokes equations; asymptotic expansions; nonlinear geometric optics; propagation of singularities; closure problems; turbulence;
D O I
10.24033/bsmf.2501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to incompressible Euler equations (or to Navier-Stokes equations in the vanishing viscosity limit). It describes the propagation of quasi-singularities. The underlying phenomena are consistent with the notion of a cascade of energy.
引用
收藏
页码:33 / 82
页数:50
相关论文
共 29 条
[1]  
Bardos C, 2001, ADV MATH FLUID MECH, P1
[2]  
BEALE JT, 1994, COMMUN MATH PHYS, P61
[3]  
Chemin J.-Y., 1998, OXFORD LECT SERIES M, V14
[4]   Fluids with anisotropic viscosity [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :315-335
[5]   Propagation of oscillations in real vanishing viscosity limit [J].
Cheverry, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) :655-695
[6]   Strong oscillations on a linearly degenerate field [J].
Cheverry, C ;
Guès, O ;
Métivier, G .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :691-745
[7]  
CHEVERRY C, IN PRESS ADV DIFFERE
[8]   DIRECTION OF VORTICITY AND THE PROBLEM OF GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FEFFERMAN, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :775-789
[9]   Stratified solutions for systems of conservation laws [J].
Corli, A ;
Gues, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2459-2486
[10]   OSCILLATIONS AND CONCENTRATIONS IN WEAK SOLUTIONS OF THE INCOMPRESSIBLE FLUID EQUATIONS [J].
DIPERNA, RJ ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :667-689