Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to -130 °C

被引:123
作者
Zhang, Wei [1 ]
Xia, Huarong [1 ]
Zhu, Zhiqiang [1 ]
Lv, Zhisheng [1 ]
Cao, Shengkai [1 ]
Wei, Jiaqi [1 ]
Luo, Yifei [1 ]
Xiao, Yao [1 ]
Liu, Lin [1 ]
Chen, Xiaodong [1 ,2 ]
机构
[1] Nanyang Technol Univ, Innovat Ctr Flexible Devices iFLEX, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Campus Res Excellence & Technol Enterprise, Singapore HUJ Alliance Res & Enterprise, Singapore 138602, Singapore
来源
CCS CHEMISTRY | 2021年 / 3卷 / 04期
基金
新加坡国家研究基金会;
关键词
low temperatures; lithium-ion batteries; electrolytes; high entropy; decimal solvent; THERMAL RUNAWAY; CARBONATE; CELLS; PERFORMANCE; MIXTURES; THERMODYNAMICS; OPERATION; CATHODE; HYBRID; ISSUES;
D O I
10.31635/ccschem.020.202000341
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Freezing and crystallization of commercial ethylene carbonate-based binary electrolytes, leading to irreversible damage to lithium-ion batteries (LIBs), remain a significant challenge for the survival of energy storage devices at extremely low temperatures (<-40 degrees C). Herein, a decimal solvent-based high-entropy electrolyte is developed with an unprecedented low freezing point of -130 degrees C to significantly extend the service temperature range of LIBs, far superior to -30 degrees C of the commercial counterpart. Distinguished from conventional electrolytes, this molecularly disordered solvent mixture greatly suppresses the freezing crystallization of electrolytes, providing good protection for LIBs from possible mechanical damage at extremely low temperatures. Benefiting from this, our high-entropy electrolyte exhibits extraordinarily high ionic conductivity of 0.62 mS.cm(-1) at -60 degrees C, several orders of magnitude higher than the frozen commercial electrolytes. Impressively, LIBs utilizing decimal electrolytes can be charged and discharged even at an ultra-low temperature of -60 degrees C, maintaining high capacity retention (similar to 80% at -40 degrees C) as well as remarkable rate capability. This study provides design strategies of low-temperature electrolytes to extend the service temperature range of LIBs, creating a new avenue for improving the survival and operation of various energy storage systems under extreme environmental conditions.
引用
收藏
页码:1245 / 1255
页数:11
相关论文
共 75 条
[31]   30 Years of Lithium-Ion Batteries [J].
Li, Matthew ;
Lu, Jun ;
Chen, Zhongwei ;
Amine, Khalil .
ADVANCED MATERIALS, 2018, 30 (33)
[32]   Wide-Temperature Electrolytes for Lithium-Ion Batteries [J].
Li, Qiuyan ;
Jiao, Shuhong ;
Luo, Langli ;
Ding, Michael S. ;
Zheng, Jianming ;
Cartmell, Samuel S. ;
Wang, Chong-Min ;
Xu, Kang ;
Zhang, Ji-Guang ;
Xu, Wu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18826-18835
[33]   A low-temperature electrolyte for lithium-ion batteries [J].
Li, Shiyou ;
Li, Xiaopeng ;
Liu, Jinliang ;
Shang, Zhichao ;
Cui, Xiaoling .
IONICS, 2015, 21 (04) :901-907
[34]   Designing Low Impedance Interface Films Simultaneously on Anode and Cathode for High Energy Batteries [J].
Liao, Bo ;
Li, Hongying ;
Xu, Mengqing ;
Xing, Lidan ;
Liao, Youhao ;
Ren, Xiubin ;
Fan, Weizhen ;
Yu, Le ;
Xu, Kang ;
Li, Weishan .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)
[35]   A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance [J].
Liu, Yao ;
Yang, Bingchang ;
Dong, Xiaoli ;
Wang, Yonggang ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (52) :16606-16610
[36]   Designing polymers for advanced battery chemistries [J].
Lopez, Jeffrey ;
Mackanic, David G. ;
Cui, Yi ;
Bao, Zhenan .
NATURE REVIEWS MATERIALS, 2019, 4 (05) :312-330
[37]   Temperature effect and thermal impact in lithium-ion batteries: A review [J].
Ma, Shuai ;
Jiang, Modi ;
Tao, Peng ;
Song, Chengyi ;
Wu, Jianbo ;
Wang, Jun ;
Deng, Tao ;
Shang, Wen .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2018, 28 (06) :653-666
[38]   New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries [J].
Mandal, Braja K. ;
Padhi, Akshaya K. ;
Shi, Zhong ;
Chakraborty, Sudipto ;
Filler, Robert .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :690-695
[39]   Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries [J].
Markevich, Elena ;
Salitra, Gregory ;
Aurbach, Doron .
ACS ENERGY LETTERS, 2017, 2 (06) :1337-1345
[40]   Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation [J].
Michan, Alison L. ;
Parirnalam, Bharathy. S. ;
Leskes, Michal ;
Kerber, Rachel N. ;
Yoon, Taeho ;
Grey, Clare P. ;
Lucht, Brett L. .
CHEMISTRY OF MATERIALS, 2016, 28 (22) :8149-8159