Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ 23Na NMR

被引:85
作者
Bayley, Paul M. [1 ]
Trease, Nicole M. [1 ]
Grey, Clare P. [1 ]
机构
[1] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
关键词
LITHIUM METAL; ION BATTERIES; MICROSTRUCTURAL LITHIUM; LIQUID ELECTROLYTE; DENDRITIC GROWTH; MOLTEN-SALTS; LI-7; MRI; NUCLEATION; ELECTRODEPOSITION; CELLS;
D O I
10.1021/jacs.5b12423
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with in situ NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling. Two regimes for the electrochemical cycling of Na metal are apparent that have implications for the use of Na anodes: at low currents, the Na deposits are partially removed on reversing the current, while at high currents, there is essentially no removal of the deposits in the initial stages. At longer times, high currents show a significantly greater accumulation of deposits during cycling, again indicating a much lower efficiency of removal of these structures when the current is reversed.
引用
收藏
页码:1955 / 1961
页数:7
相关论文
共 34 条
[1]   METAL ELECTRODEPOSITION ON SEMICONDUCTORS .1. COMPARISON WITH GLASSY-CARBON IN THE CASE OF PLATINUM DEPOSITION [J].
ALLONGUE, P ;
SOUTEYRAND, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 286 (1-2) :217-237
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]   ELECTROLYTIC GROWTH OF DENDRITES FROM IONIC SOLUTIONS [J].
BARTON, JL ;
BOCKRIS, JO .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 268 (1335) :485-&
[5]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[6]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[7]  
Callaghan P. T., 2011, TRANSLATIONAL DYNAMI, DOI 10.1093/acprof:oso/9780199556984.001.0001
[8]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[9]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[10]   Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM [J].
Chang, Hee Jung ;
Trease, Nicole M. ;
Ilott, Andrew J. ;
Zeng, Dongli ;
Du, Lin-Shu ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16443-16451