Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8

被引:20
作者
Jomekian, A. [1 ,2 ]
Behbahani, R. M. [1 ]
Mohammadi, T. [2 ]
Kargari, A. [3 ]
机构
[1] Petr Univ Technol, Ahvaz Fac Petr Engn, Gas Engn Dept, POB 63431, Ahvaz, Iran
[2] Iran Univ Sci & Technol, Fac Chem Engn, Tehran, Iran
[3] Amirkabir Univ Technol, Dept Petrochem Engn, Mahshahr, Iran
关键词
ZIF-8; Pebax; 1657; Mean pore size; BET surface area; Temperature; Molar ratio of precursors; ZEOLITIC IMIDAZOLATE FRAMEWORK-8; ROOM-TEMPERATURE SYNTHESIS; AQUEOUS-SOLUTIONS; CRYSTAL-GROWTH; METAL; ADSORPTION; SIZE; NANOCRYSTALS; TRANSITION; SURFACTANT;
D O I
10.1016/j.jssc.2016.01.004
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N-2 adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1-2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m(2)/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to the synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn2+ had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 27 条
[1]   POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) BLOCK-COPOLYMER SURFACTANTS IN AQUEOUS-SOLUTIONS AND AT INTERFACES - THERMODYNAMICS, STRUCTURE, DYNAMICS, AND MODELING [J].
ALEXANDRIDIS, P ;
HATTON, TA .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 96 (1-2) :1-46
[2]   Crystal growth of nanoporous metal organic frameworks [J].
Attfield, Martin P. ;
Cubillas, Pablo .
DALTON TRANSACTIONS, 2012, 41 (14) :3869-3878
[3]   Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature [J].
Bustamante, Eugenia L. ;
Fernandez, Jose L. ;
Zamaro, Juan M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 424 :37-43
[4]  
Cravillon J., 2011, ANGEW CHEM, V123, P8217
[5]   Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering [J].
Cravillon, Janosch ;
Nayuk, Roman ;
Springer, Sergej ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2130-2141
[6]   Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J].
Cravillon, Janosch ;
Muenzer, Simon ;
Lohmeier, Sven-Jare ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1410-1412
[7]   Synthesis of ZIF-8 from recycled mother liquors [J].
Demir, Nilay Keser ;
Topuz, Berna ;
Yilmaz, Levent ;
Kalipcilar, Halil .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 198 :291-300
[8]   Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks [J].
Gross, Adam F. ;
Sherman, Elena ;
Vajo, John J. .
DALTON TRANSACTIONS, 2012, 41 (18) :5458-5460
[9]   One-step synthesis of nanostructured mesoporous ZIF-8/silica composites [J].
Hu, Xiaoyan ;
Yan, Xinlong ;
Zhou, Min ;
Komarneni, Sridhar .
MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 219 :311-316
[10]   Rigid templating of high surface-area, mesoporous, nanocrystalline rutile using a polyether block amide copolymer template [J].
Jiang, Xingmao ;
Brinker, C. Jeffrey .
CHEMICAL COMMUNICATIONS, 2010, 46 (33) :6123-6125