Infinite Jacobi matrices with unbounded entries: Asymptotics of eigenvalues and the transformation operator approach

被引:28
作者
Janas, J
Naboko, S
机构
[1] Polish Acad Sci, Inst Math, PL-31027 Krakow, Poland
[2] St Petersburg State Univ, Inst Phys, Dept Math Phys, St Petersburg 198904, Russia
关键词
unbounded Jacobi operator; asymptotics of eigenvalues; transformation operator; successive diagonalization;
D O I
10.1137/S0036141002406072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the exact asymptotics of eigenvalues lambda(n)(J), n-->infinity, of a class of unbounded self-adjoint Jacobi matrices J with discrete spectrum are given. Their calculation is based on a successive diagonalization approach-a new version of the classical transformation operator method. The approximations of the transformation operator are constructed step by step using a successive diagonalization procedure, which results in higher order approximations of the lambda(n)(J).
引用
收藏
页码:643 / 658
页数:16
相关论文
共 36 条
[1]  
Akhiezer, 1965, CLASSICAL MOMENT PRO
[2]  
[Anonymous], 1972, QUANTUM MECH
[3]  
Berezanskii Yu. M., 1965, EXPANSIONS EIGENFUNC
[4]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[5]  
Braun P. A., 1983, INTRO THEORY MOL SPE
[6]  
BRAUN PA, 1987, INTERACTION ATOMS MO, P200
[7]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[8]  
CYCON HL, 1987, SCHROEDINGER OPERATO
[9]  
Delsarte J., 1938, J. Math. Pures Appl, V17, P213
[10]  
Delsarte J., 1957, COMMENT MATH HELV, V32, P113