Superconducting Quantum Metamaterials from High Pressure Melt Infiltration of Metals into Block Copolymer Double Gyroid Derived Ceramic Templates

被引:10
作者
Thedford, R. Paxton [1 ,2 ]
Beaucage, Peter A. [1 ,6 ]
Susca, Ethan M. [1 ,7 ]
Chao, Corson A. [1 ]
Nowack, Katja C. [3 ,4 ]
Van Dover, Robert B. [1 ]
Gruner, Sol M. [4 ,5 ]
Wiesner, Ulrich [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[4] Cornell Univ, Kavli Inst, Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[5] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[6] NIST, Ctr Neutron Res, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[7] Intel Corp, Santa Clara, CA 95054 USA
基金
美国国家科学基金会;
关键词
block copolymers; mesoscale; metamaterials; quantum materials; self‐ assembly; superconductors; MIXED-STATE; THIN-FILMS; TEMPERATURE; TRANSITION; PB; FLUCTUATIONS; CRYSTALS;
D O I
10.1002/adfm.202100469
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mesoscale order can lead to emergent properties including phononic bandgaps or topologically protected states. Block copolymers offer a route to mesoscale periodic architectures, but their use as structure directing agents for metallic materials has not been fully realized. A versatile approach to mesostructured metals via bulk block copolymer self-assembly derived ceramic templates, is demonstrated. Molten indium is infiltrated into mesoporous, double gyroidal silicon nitride templates under high pressure to yield bulk, 3D periodic nanocomposites as free-standing monoliths which exhibit emergent quantum-scale phenomena. Vortices are artificially introduced when double gyroidal indium metal behaves as a type II superconductor, with evidence of strong pinning centers arrayed on the order of the double gyroid lattice size. Sample behavior is reproducible over months, showing high stability. High pressure infiltration of bulk block copolymer self-assembly based ceramic templates is an enabling tool for studying high-quality metals with previously inaccessible architectures, and paves the way for the emerging field of block-copolymer derived quantum metamaterials.
引用
收藏
页数:9
相关论文
共 57 条
  • [1] Superconductivity in Pb inverse opal
    Aliev, Ali E.
    Lee, Sergey B.
    Zakhidov, Anvar A.
    Baughman, Ray H.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 453 (1-2): : 15 - 23
  • [2] Aronson M., 2016, BASIC RES NEEDS WORK
  • [3] THEORY OF SUPERCONDUCTIVITY
    BARDEEN, J
    COOPER, LN
    SCHRIEFFER, JR
    [J]. PHYSICAL REVIEW, 1957, 108 (05): : 1175 - 1204
  • [4] THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS
    BARRETT, EP
    JOYNER, LG
    HALENDA, PP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) : 373 - 380
  • [5] Multiblock Polymers: Panacea or Pandora's Box?
    Bates, Frank S.
    Hillmyer, Marc A.
    Lodge, Timothy P.
    Bates, Christopher M.
    Delaney, Kris T.
    Fredrickson, Glenn H.
    [J]. SCIENCE, 2012, 336 (6080) : 434 - 440
  • [6] VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS
    BLATTER, G
    FEIGELMAN, MV
    GESHKENBEIN, VB
    LARKIN, AI
    VINOKUR, VM
    [J]. REVIEWS OF MODERN PHYSICS, 1994, 66 (04) : 1125 - 1388
  • [7] A review of finite size effects in quasi-zero dimensional superconductors
    Bose, Sangita
    Ayyub, Pushan
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (11)
  • [8] Bose S, 2010, NAT MATER, V9, P550, DOI [10.1038/NMAT2768, 10.1038/nmat2768]
  • [9] Competing effects of surface phonon softening and quantum size effects on the superconducting properties of nanostructured Pb
    Bose, Sangita
    Galande, Charudatta
    Chockalingam, S. P.
    Banerjee, Rajarshi
    Raychaudhuri, Pratap
    Ayyub, Pushan
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (20)
  • [10] Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals
    Bykov, A. A.
    Gokhfeld, D. M.
    Savitskaya, N. E.
    Terentjev, K. Yu
    Popkov, S., I
    Mistonov, A. A.
    Grigoryeva, N. A.
    Zakhidov, A.
    Grigoriev, S., V
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2019, 32 (11)