Iterative single-cell multi-omic integration using online learning

被引:59
作者
Gao, Chao [1 ]
Liu, Jialin [1 ]
Kriebel, April R. [1 ]
Preissl, Sebastian [2 ]
Luo, Chongyuan [3 ,4 ,7 ]
Castanon, Rosa [3 ]
Sandoval, Justin [3 ]
Rivkin, Angeline [3 ]
Nery, Joseph R. [3 ]
Behrens, Margarita M. [5 ]
Ecker, Joseph R. [3 ,4 ]
Ren, Bing [2 ]
Welch, Joshua D. [1 ,6 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Calif San Diego, Sch Med, Dept Cellular & Mol Med, Ctr Epigen, La Jolla, CA 92093 USA
[3] Salk Inst Biol Studies, Genom Anal Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[4] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[5] Salk Inst Biol Studies, Computat Neurobiol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[6] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[7] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
EXPRESSION; SEQ;
D O I
10.1038/s41587-021-00867-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative non-negative matrix factorization (iNMF), an algorithm for integrating large, diverse and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than 1 million cells on a standard laptop, integrating large single-cell RNA sequencing and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex. A new algorithm enables scalable and iterative integration of single-cell datasets.
引用
收藏
页码:1000 / +
页数:19
相关论文
共 33 条
[1]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[2]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[3]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[4]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[5]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[6]   The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas [J].
Ecker, Joseph R. ;
Geschwind, Daniel H. ;
Kriegstein, Arnold R. ;
Ngai, John ;
Osten, Pavel ;
Polioudakis, Damon ;
Regev, Aviv ;
Sestan, Nenad ;
Wickersham, Ian R. ;
Zeng, Hongkui .
NEURON, 2017, 96 (03) :542-557
[7]   Neurogenesis in the Striatum of the Adult Human Brain [J].
Ernst, Aurelie ;
Alkass, Kanar ;
Bernard, Samuel ;
Salehpour, Mehran ;
Perl, Shira ;
Tisdale, John ;
Possnert, Goran ;
Druid, Henrik ;
Frisen, Jonas .
CELL, 2014, 156 (05) :1072-1083
[8]   De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data [J].
Grun, Dominic ;
Muraro, Mauro J. ;
Boisset, Jean-Charles ;
Wiebrands, Kay ;
Lyubimova, Anna ;
Dharmadhikari, Gitanjali ;
van den Born, Maaike ;
van Es, Johan ;
Jansen, Erik ;
Clevers, Hans ;
de Koning, Eelco J. P. ;
van Oudenaarden, Alexander .
CELL STEM CELL, 2016, 19 (02) :266-277
[9]   A benchmark of batch-effect correction methods for single-cell RNA sequencing data [J].
Hoa Thi Nhu Tran ;
Ang, Kok Siong ;
Chevrier, Marion ;
Zhang, Xiaomeng ;
Lee, Nicole Yee Shin ;
Goh, Michelle ;
Chen, Jinmiao .
GENOME BIOLOGY, 2020, 21 (01)
[10]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218