Popoviciu's inequality for functions of several variables

被引:11
作者
Bencze, Mihaly [1 ]
Niculescu, Constantin P. [1 ]
Popovici, Florin [2 ]
机构
[1] Univ Craiova, Dept Math, RO-200585 Craiova, Romania
[2] Coll Grigore Moisil, Brasov, Romania
关键词
Popoviciu's inequality; Choquet's theory; Convex function;
D O I
10.1016/j.jmaa.2009.10.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
T. Popoviciu (1965) [13] has proved an interesting characterization of the convex functions of one real variable, based on an inequality relating the values at any three points x(1), x(2), x(3), with the values at their means of different orders: (x(1) + x(2))/2, (x(2) + x(3))/2, (x(3) + x(1))/2 and (x(1) + x(2) + x(3))/3. The aim of our paper is to develop a higher dimensional analogue of the usual convexity based on his characterization. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 409
页数:11
相关论文
共 13 条
[1]   The Hermite-Hadamard inequality on simplices [J].
Bessenyei, Mihaly .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (04) :339-345
[2]  
Carlson B., 1977, Special Functions of Applied Mathematics, V1st ed.
[3]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[4]  
Hornich H., 1942, MATH Z, V48, P268, DOI DOI 10.1007/BF01180017
[5]  
KELLY L. M., 1965, AM MATH MONTHLY, V72, P753
[6]   ABSOLUTELY SUMMING OPERATORS IN LP-SPACES AND THEIR APPLICATIONS [J].
LINDENST.J ;
PELCZYNS.A .
STUDIA MATHEMATICA, 1968, 29 (03) :275-&
[7]  
Lindenstrauss J., 1964, Ill. J. Math., V8, P488
[8]   Inverse spectral problem for normal matrices and the Gauss-Lucas theorem [J].
Malamud, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) :4043-4064
[9]  
Niculescu C. P., 2006, CMS BOOKS MATH OUVRA, V23
[10]  
Niculescu CP, 2009, J MATH INEQUAL, V3, P323