Multiscale Models for Light-Driven Processes

被引:32
作者
Nottoli, Michele [1 ]
Cupellini, Lorenzo [1 ]
Lipparini, Filippo [1 ]
Granucci, Giovanni [1 ]
Mennucci, Benedetta [1 ]
机构
[1] Univ Pisa, Dipartimento Chim & Chim Ind, I-56124 Pisa, Italy
来源
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 72 | 2021年 / 72卷
基金
欧洲研究理事会;
关键词
polarizable embedding; QM/MM; continuum models; nonadiabatic dynamics; excitation energy transfer; electron transfer; POLARIZABLE CONTINUUM MODEL; EXCITATION-ENERGY TRANSFER; MOLECULAR-DYNAMICS SIMULATION; BIOLOGICAL ELECTRON-TRANSFER; FRAGMENT POTENTIAL METHOD; FORCE-FIELDS; LINEAR-RESPONSE; QM/MM METHODS; QUANTUM; COUPLINGS;
D O I
10.1146/annurev-physchem-090419-104031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiscale models combining quantum mechanical and classical descriptions are a very popular strategy to simulate properties and processes of complex systems. Many alternative formulations have been developed, and they are now available in all of the most widely used quantum chemistry packages. Their application to the study of light-driven processes, however, is more recent, and some methodological and numerical problems have yet to be solved. This is especially the case for the polarizable formulation of these models, the recent advances in which we review here. Specifically, we identify and describe the most important specificities that the polarizable formulation introduces into both the simulation of excited-state dynamics and the modeling of excitation energy and electron transfer processes.
引用
收藏
页码:489 / 513
页数:25
相关论文
共 140 条
[1]   Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation [J].
Aguilera-Porta, Neus ;
Corral, Ines ;
Munoz-Muriedas, Jordi ;
Granucci, Giovanni .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2019, 1152 :20-27
[2]   Modeling excitation energy transfer in multi-BODIPY architectures [J].
Azarias, Cloe ;
Russo, Roberto ;
Cupellini, Lorenzo ;
Mennucci, Benedetta ;
Jacquemin, Denis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (09) :6443-6453
[3]   Beyond Forster Resonance Energy Transfer in Biological and Nanoscale Systems [J].
Beljonne, David ;
Curutchet, Carles ;
Scholes, Gregory D. ;
Silbey, Robert J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (19) :6583-6599
[4]   Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment [J].
Blumberger, Jochen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (37) :5651-5667
[5]   Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions [J].
Blumberger, Jochen .
CHEMICAL REVIEWS, 2015, 115 (20) :11191-11238
[6]   Polarizable embedding QM/MM: the future gold standard for complex (bio)systems? [J].
Bondanza, Mattia ;
Nottoli, Michele ;
Cupellini, Lorenzo ;
Lipparini, Filippo ;
Mennucci, Benedetta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (26) :14433-14448
[7]   Elementary electron transfer reactions: from basic concepts to recent computational advances [J].
Borrelli, Raffaele ;
Peluso, Andrea .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2013, 3 (06) :542-559
[8]   The temperature dependence of radiationless transition rates from ab initio computations [J].
Borrelli, Raffaele ;
Peluso, Andrea .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) :4420-4426
[9]   Machine Learning Force Fields: Construction, Validation, and Outlook [J].
Botu, V. ;
Batra, R. ;
Chapman, J. ;
Ramprasad, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :511-522
[10]   QM/MM methods for free energies and photochemistry [J].
Boulanger, Eliot ;
Harvey, Jeremy N. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 49 :72-76