Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis

被引:70
|
作者
Sutradhar, Alok [1 ,2 ]
Park, Jaejong [2 ]
Carrau, Diana [3 ]
Miller, Michael J. [1 ]
机构
[1] Ohio State Univ, Dept Plast Surg, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Coll Med, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Craniofacial implants; Topology optimization; Segmental bone defect; Digital image correlation; Masticatory simulation; RECONSTRUCTION; OPTIMIZATION; MODELS;
D O I
10.1016/j.compbiomed.2014.06.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 50 条
  • [31] Patient-specific 3D-printed Splint for Mallet Finger Injury
    Zolfagharian, Ali
    Gregory, Timothy M.
    Bodaghi, Mahdi
    Gharaie, Saleh
    Fay, Pearse
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (02) : 16 - 28
  • [32] Accuracy evaluation of patient-specific 3D-printed aortic anatomy
    Kaschwich, Mark
    Horn, Marco
    Matthiensen, Sarah
    Stahlberg, Erik
    Behrendt, Christian-Alexander
    Matysiak, Florian
    Bouchagiar, Juljan
    Dell, Annika
    Ellebrecht, David
    Bayer, Andreas
    Kleemann, Markus
    ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2021, 234
  • [33] Finite element modelling of complex 3D image data with quantification and analysis
    Chakkour, Tarik
    OXFORD OPEN MATERIALS SCIENCE, 2024, 4 (01):
  • [34] Passive 3D Face Reconstruction with 3D Digital Image Correlation
    Kieu, Hien
    Wang, Zhaoyang
    Le, Minh
    Nguyen, Hieu
    ADVANCEMENT OF OPTICAL METHODS IN EXPERIMENTAL MECHANICS, VOL 3, 2015, : 403 - 407
  • [35] Error estimation of 3D reconstruction in 3D digital image correlation
    Zhu, Chengpeng
    Yu, Shanshan
    Liu, Cong
    Jiang, Pengfei
    Shao, Xinxing
    He, Xiaoyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (02)
  • [36] Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission
    Strungar, E. M.
    Yankin, A. S.
    Zubova, E. M.
    Babushkin, A. V.
    Dushko, A. N.
    ACTA MECHANICA SINICA, 2020, 36 (02) : 448 - 459
  • [37] Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation
    Sharafisafa, Mansour
    Shen, Luming
    Xu, Qingfeng
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 112 : 122 - 138
  • [38] CTE measurements for 3D package substrates using Digital Image Correlation
    Salahouelhadj, A.
    Gonzalez, M.
    2016 17TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2016,
  • [39] Rehearsals using patient-specific 3D-printed aneurysm models for simulation of endovascular embolization of complex intracranial aneurysms: 3D SIM study
    Le Bras, Anthony
    Boustia, Fakhreddine
    Janot, Kevin
    Le Pabic, Estelle
    Ouvrard, Mathilde
    Fougerou-Leurent, Claire
    Ferre, Jean-Christophe
    Gauvrit, Jean-Yves
    Eugene, Francois
    JOURNAL OF NEURORADIOLOGY, 2023, 50 (01) : 86 - 92
  • [40] Experimental Investigation of Dynamic Fracture Patterns of 3D Printed Rock-like Material Under Impact with Digital Image Correlation
    Mansour Sharafisafa
    Luming Shen
    Rock Mechanics and Rock Engineering, 2020, 53 : 3589 - 3607