On the growth of mass for a viscous Hamilton-Jacobi equation

被引:26
|
作者
Laurençot, P
Souplet, P
机构
[1] Univ Toulouse 3, CNRS, UMR 5640, F-31062 Toulouse 4, France
[2] Univ Picardie, Dept Math, INSSET, F-02109 St Quentin, France
[3] Univ Versailles, Lab Math Appl, CNRS, UMR 7641, F-78035 Versailles, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 89卷 / 1期
关键词
D O I
10.1007/BF02893088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the large time behavior of positive solutions with finite mass for the viscous Hamilton-Jacobi equation u(t) = Deltau + \delu\(p), t > 0, x is an element of R-N, where p greater than or equal to 1 and u(0,.) = u(0) greater than or equal to 0, u(0) not equivalent to 0, u(0) is an element of L-1. Denoting I-infinity = lim(t-->infinity) parallel tou(t)parallel to(1) less than or equal to infinity, we show that the asymptotic behavior of the mass can be classified along three cases as follows: if p less than or equal to (N + 2)/(N + 1), then I-infinity = infinity for all u(0); if (N + 2)/(N + 1) < p < 2, then both I-infinity = infinity and I-infinity < infinity occur; if p greater than or equal to 2, then I-infinity < infinity for all u(0). We also consider a similar question for the equation u(t) = Deltau + u(p).
引用
收藏
页码:367 / 383
页数:17
相关论文
共 50 条