On the growth of mass for a viscous Hamilton-Jacobi equation

被引:26
|
作者
Laurençot, P
Souplet, P
机构
[1] Univ Toulouse 3, CNRS, UMR 5640, F-31062 Toulouse 4, France
[2] Univ Picardie, Dept Math, INSSET, F-02109 St Quentin, France
[3] Univ Versailles, Lab Math Appl, CNRS, UMR 7641, F-78035 Versailles, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 89卷 / 1期
关键词
D O I
10.1007/BF02893088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the large time behavior of positive solutions with finite mass for the viscous Hamilton-Jacobi equation u(t) = Deltau + \delu\(p), t > 0, x is an element of R-N, where p greater than or equal to 1 and u(0,.) = u(0) greater than or equal to 0, u(0) not equivalent to 0, u(0) is an element of L-1. Denoting I-infinity = lim(t-->infinity) parallel tou(t)parallel to(1) less than or equal to infinity, we show that the asymptotic behavior of the mass can be classified along three cases as follows: if p less than or equal to (N + 2)/(N + 1), then I-infinity = infinity for all u(0); if (N + 2)/(N + 1) < p < 2, then both I-infinity = infinity and I-infinity < infinity occur; if p greater than or equal to 2, then I-infinity < infinity for all u(0). We also consider a similar question for the equation u(t) = Deltau + u(p).
引用
收藏
页码:367 / 383
页数:17
相关论文
共 50 条
  • [31] Semiconcavity estimates for viscous Hamilton-Jacobi equations
    Stromberg, Thomas
    ARCHIV DER MATHEMATIK, 2010, 94 (06) : 579 - 589
  • [32] Nonlinear Stabilization of a Viscous Hamilton-Jacobi PDE
    Bekiaris-Liberis, Nikolaos
    Bayen, Alexandre M.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2858 - 2863
  • [33] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [34] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [35] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [36] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [37] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [38] Turnpike theorem and the Hamilton-Jacobi equation
    Rapaport, A
    Cartigny, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) : 1091 - 1094
  • [39] PRACTICAL USE OF THE HAMILTON-JACOBI EQUATION
    CHODOS, A
    SOMMERFIELD, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 271 - 275
  • [40] Gradient blowup behavior for a viscous Hamilton-Jacobi equation with degenerate gradient nonlinearity
    Chang, Caihong
    Hu, Bei
    Zhang, Zhengce
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 359 : 23 - 66