Data-Driven Discovery of Fokker-Planck Equation for the Earth's Radiation Belts Electrons Using Physics-Informed Neural Networks

被引:16
作者
Camporeale, E. [1 ,2 ]
Wilkie, George J. [3 ]
Drozdov, Alexander Y. [4 ]
Bortnik, Jacob [4 ]
机构
[1] Univ Colorado, CIRES, Boulder, CO 80309 USA
[2] NOAA, Space Weather Predict Ctr, Boulder, CO 80309 USA
[3] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[4] Univ Calif Los Angeles, Los Angeles, CA USA
基金
美国国家航空航天局;
关键词
radiation belt; machine learning; inverse problem; radial diffusion; RELATIVISTIC ELECTRONS; NUMERICAL-SIMULATION; PARTICLE DYNAMICS; DIFFUSION; STORM; ACCELERATION; MODEL; CHALLENGE; TRANSPORT;
D O I
10.1029/2022JA030377
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the framework of Physics-Informed Neural Network (PINN) to solve the inverse problem associated with the Fokker-Planck equation for radiation belts' electron transport, using 4 years of Van Allen Probes data. Traditionally, reduced models have employed a diffusion equation based on the quasilinear approximation. We show that the dynamics of "killer electrons" is described more accurately by a drift-diffusion equation, and that drift is as important as diffusion for nearly-equatorially trapped similar to 1 MeV electrons in the inner part of the belt. Moreover, we present a recipe for gleaning physical insight from solving the ill-posed inverse problem of inferring model coefficients from data using PINNs. Furthermore, we derive a parameterization for the diffusion and drift coefficients as a function of L only, which is both simpler and more accurate than earlier models. Finally, we use the PINN technique to develop an automatic event identification method that allows identifying times at which the radial transport assumption is inadequate to describe all the physics of interest.
引用
收藏
页数:19
相关论文
共 97 条
[71]   Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model [J].
Ripoll, J. -F. ;
Reeves, G. D. ;
Cunningham, G. S. ;
Loridan, V. ;
Denton, M. ;
Santolik, O. ;
Kurth, W. S. ;
Kletzing, C. A. ;
Turner, D. L. ;
Henderson, M. G. ;
Ukhorskiy, A. Y. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (11) :5616-5625
[72]  
Roederer J.G., 2016, DYNAMICS MAGNETICALL
[73]   GEOMAGNETIC INDEXES [J].
ROSTOKER, G .
REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, 1972, 10 (04) :935-&
[74]   Data-driven discovery of partial differential equations [J].
Rudy, Samuel H. ;
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
SCIENCE ADVANCES, 2017, 3 (04)
[75]   Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes [J].
Sarma, Rakesh ;
Chandorkar, Mandar ;
Zhelavskaya, Irina ;
Shprits, Yuri ;
Drozdov, Alexander ;
Camporeale, Enrico .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (05)
[76]  
Schulz M., 1974, Particle diffusion in the radiation belts
[77]   Statistical study of the storm time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms [J].
Shen, Xiao-Chen ;
Hudson, Mary K. ;
Jaynes, Allison N. ;
Shi, Quanqi ;
Tian, Anmin ;
Claudepierre, Seth G. ;
Qin, Mu-Rong ;
Zong, Qiu-Gang ;
Sun, Wei-Jie .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) :8327-8339
[78]   Evolution of electron fluxes in the outer radiation belt computed with the VERB code [J].
Shprits, Yuri Y. ;
Subbotin, Dmitri ;
Ni, Binbin .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[79]   Radial diffusion modeling with empirical lifetimes: comparison with CRRES observations [J].
Shprits, YY ;
Thorne, RM ;
Reeves, GD ;
Friedel, R .
ANNALES GEOPHYSICAE, 2005, 23 (04) :1467-1471
[80]   Spectra and Pitch-Angular Distributions of Relativistic Electrons Near the Outer Radiation Belt Maximum During the Magnetic Storm of December 19-22, 2015 [J].
Sotnikov, N. V. ;
Antonova, E. E. ;
Riazantseva, M. O. ;
Ovchinnikov, I. L. ;
Rubinstein, I. A. ;
Barinova, V. O. ;
Mit', S. K. .
GEOMAGNETISM AND AERONOMY, 2019, 59 (06) :651-659