Distributed state simulation of endogenous processes in biological wastewater treatment

被引:8
作者
Schuler, Andrew J. [1 ]
Jassby, David [1 ]
机构
[1] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27701 USA
基金
美国国家科学基金会;
关键词
distributed states; endogenous; degradation; modeling; phosphorus removal; population dynamics; wastewater treatment;
D O I
10.1002/bit.21336
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Distributed state-type simulations (based on modeling of individual bacteria, as they move through a reactor system) predicted a greater sensitivity of enhanced biological phosphorus removal (EBPR) performance to endogenous degradation than did conventional "lumped"-type simulations (based on average biomass compositions). Recent research has indicated that the variable hydraulic residence times experienced by, individual, microbial storage product accumulating bacteria in systems with completely mixed reactors tend to Produce populations with diverse microbial storage product contents (distributed states). Endogenous degradation - in - EBPR systems, is of particular interest because the polyphosphate accumulating organisms (PAOs) responsible for EBPR rely on the accumulation of three different storage products that may be endogenously degraded. Simulation's indicated that as endogenous degradation rates of microbial storage products were increased, EBPR performance decreased more rapidly according to the distributed approach than according to the lumped approach. State profile analysis demonstrated that as these rates increased, the population fraction with depleted storage products also increased, and this tended to the error in calculated biokinetic rates by the approach. Simulations based on recently reported endogenous rate coefficients also suggested large differences between distributed and lumped predictions of EBPR performance. These results demonstrated that endogenous decay processes may play a more important role in EBPR than predicted by the lumped approach. This suggests a need for further research to determine endogenous process rates, and for incorporation of this information to distributed-type simulators, as this should lead to improved accuracy of EBPR simulations.
引用
收藏
页码:1087 / 1097
页数:11
相关论文
共 20 条
[1]  
[Anonymous], ACTIVATED SLUDGE MOD
[2]  
[Anonymous], ADV WATER POLLUTION, DOI DOI 10.1007/s00248-006-9150-9
[3]  
GUJER W, 1995, WATER SCI TECHNOL, V31, P1, DOI 10.1016/0273-1223(95)00175-M
[4]  
Gujer W, 2002, WATER SCI TECHNOL, V45, P1
[5]  
KOUNT RR, 1999, SEWAGE IND WASTES, V31, P819
[6]   Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal [J].
Lopez, C. ;
Pons, M. N. ;
Morgenroth, E. .
WATER RESEARCH, 2006, 40 (08) :1519-1530
[7]  
LOPEZ C, 2003, WEFTEC 2003 76 ANN C
[8]  
MCKINNEY RE, 1960, WATER SEWAGE WORKS, V111, P246
[9]  
Murnleitner E, 1997, BIOTECHNOL BIOENG, V54, P434
[10]   The EAWAG Bio-P module for activated sludge model No. 3 [J].
Rieger, L ;
Koch, G ;
Kühni, M ;
Gujer, W ;
Siegrist, H .
WATER RESEARCH, 2001, 35 (16) :3887-3903