Two weight norm inequalities for the bilinear fractional integrals

被引:9
作者
Li, Kangwei [1 ,2 ]
Sun, Wenchang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
CALDERON-ZYGMUND OPERATORS; MAXIMAL OPERATORS; POTENTIAL TYPE; 2-WEIGHT; BOUNDS; SPACES;
D O I
10.1007/s00229-015-0800-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a characterization of the two weight strong and weak type norm inequalities for the bilinear fractional integrals in terms of Sawyer type testing conditions. Namely, we give the characterization of the following inequalities, when q a parts per thousand yen p (1), p (2) > 1 and p (1) + p (2) a parts per thousand yen p (1) p (2).
引用
收藏
页码:159 / 175
页数:17
相关论文
共 30 条
  • [1] LOGARITHMIC BUMP CONDITIONS FOR CALDERON-ZYGMUND OPERATORS ON SPACES OF HOMOGENEOUS TYPE
    Anderson, Theresa C.
    Cruz-Uribe, David
    Moen, Kabe
    [J]. PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 17 - 43
  • [2] Cruz-Uribe D, 1999, MATH RES LETT, V6, P417
  • [3] Cruz-Uribe D, 2000, INDIANA U MATH J, V49, P697
  • [4] Cruz-Uribe D, 2013, ILLINOIS J MATH, V57, P295
  • [5] Sharp weighted estimates for classical operators
    Cruz-Uribe, David
    Maria Martell, Jose
    Perez, Carlos
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (01) : 408 - 441
  • [6] SHARP WEIGHTED BOUNDS INVOLVING A∞
    Hytoenen, Tuomas
    Perez, Carlos
    [J]. ANALYSIS & PDE, 2013, 6 (04): : 777 - 818
  • [7] Hytonen T., 2 WEIGHT INEQUALITY
  • [8] TWO-WEIGHT NORM INEQUALITIES FOR POTENTIAL TYPE AND MAXIMAL OPERATORS IN A METRIC SPACE
    Kairema, Anna
    [J]. PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 3 - 56
  • [9] Lacey M., SEPARATED BUMPS CONJ
  • [10] LACEY M. T., 2 WEIGHT INEQUALITIE