Microstructural effect on time-dependent plasticity of nanoporous gold

被引:16
作者
Kang, Na-Ri [1 ]
Gwak, Eun-Ji [1 ]
Jeon, Hansol [1 ]
Song, Eunji [1 ]
Kim, Ju-Young [1 ]
机构
[1] UNIST Ulsan Natl Inst Sci & Technol, Sch Mat Sci & Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Creep; Dislocation; Grain boundaries; Porous material; Microstructures; STRAIN-RATE SENSITIVITY; SPHERICAL NANOINDENTATION; MECHANICAL-PROPERTIES; CATALYTIC-ACTIVITY; ROOM-TEMPERATURE; YIELD STRENGTH; CREEP-BEHAVIOR; SIZE; INDENTATION; NANOCRYSTALLINE;
D O I
10.1016/j.ijplas.2018.05.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Annealed, prestrained, and ball-milled nanoporous gold (np-Au) samples were prepared. Since the microstructures of the precursor alloys, such as the crystallographic orientation and grain size, were mostly preserved during the dealloying process, prestrained np-Au is believed to have higher initial dislocation density, and ball-milled np-Au is believed to have higher densities of initial dislocation and grain boundary comparing to annealed np-Au. The time-dependent deformation behavior of np-Au samples with various microstructures was characterized with two parameters; creep strain exponent n and activation volume V* using spherical nanoindentation creep tests. We found that primary mechanism of time-dependent plasticity for annealed and prestrained np-Au samples is dislocation slip and that for ball-milled np-Au sample is grain boundary sliding. In dislocation slip-dominant time-dependent deformation in np-Au, a higher initial dislocation density lowers n and V*. In grain boundary sliding-dominant time-dependent deformation in np-Au, the values of n and V* are similar to those for dislocation slip-dominant time-dependent deformation; however, the creep strain rate in quasi-steady-state is higher than that for dislocation slip-dominant time-dependent deformation.
引用
收藏
页码:108 / 120
页数:13
相关论文
共 57 条
[1]   Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature [J].
Aitken, Zachary H. ;
Jang, Dongchan ;
Weinberger, Christopher R. ;
Greer, Julia R. .
SMALL, 2014, 10 (01) :100-108
[2]   Overview no. 132: The creep of cellular solids [J].
Andrews, EW ;
Gibson, LJ ;
Ashby, MF .
ACTA MATERIALIA, 1999, 47 (10) :2853-2863
[3]   Surface-chemistry-driven actuation in nanoporous gold [J].
Biener, J. ;
Wittstock, A. ;
Zepeda-Ruiz, L. A. ;
Biener, M. M. ;
Zielasek, V. ;
Kramer, D. ;
Viswanath, R. N. ;
Weissmueller, J. ;
Baeumer, M. ;
Hamza, A. V. .
NATURE MATERIALS, 2009, 8 (01) :47-51
[4]   Size effects on the mechanical behavior of nanoporous Au [J].
Biener, Juergen ;
Hodge, Andrea M. ;
Hayes, Joel R. ;
Volkert, Cynthia A. ;
Zepeda-Ruiz, Luis A. ;
Hamza, Alex V. ;
Abraham, Farid F. .
NANO LETTERS, 2006, 6 (10) :2379-2382
[5]   ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity [J].
Biener, Monika M. ;
Biener, Juergen ;
Wichmann, Andre ;
Wittstock, Arne ;
Baumann, Theodore F. ;
Baeumer, Marcus ;
Hamza, Alex V. .
NANO LETTERS, 2011, 11 (08) :3085-3090
[6]   Effects of strut geometry and pore fraction on creep properties of cellular materials [J].
Boonyongmaneerat, Yuttanant ;
Dunand, David C. .
ACTA MATERIALIA, 2009, 57 (05) :1373-1384
[7]   Developing scaling relations for the yield strength of nanoporous gold [J].
Briot, Nicolas J. ;
Balk, T. John .
PHILOSOPHICAL MAGAZINE, 2015, 95 (27) :2955-2973
[8]   Analysis of Garofalo equation parameters for an ultrahigh carbon steel [J].
Castellanos, Jesus ;
Rieiro, Ignacio ;
Carsi, Manuel ;
Ruano, Oscar A. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (20) :5522-5527
[9]   Structural evolution of nanoporous gold during thermal coarsening [J].
Chen-Wiegart, Yu-chen Karen ;
Wang, Steve ;
Chu, Yong S. ;
Liu, Wenjun ;
McNulty, Ian ;
Voorhees, Peter W. ;
Dunand, David C. .
ACTA MATERIALIA, 2012, 60 (12) :4972-4981
[10]   Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses [J].
Choi, In-Chul ;
Kim, Yong-Jae ;
Seok, Moo-Young ;
Yoo, Byung-Gil ;
Kim, Ju-Young ;
Wang, Yinmin ;
Jang, Jae-il .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 41 :53-64