Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior

被引:26
作者
Fang, Wei [1 ,2 ,3 ]
Wu, Dufan [2 ,3 ,4 ]
Kim, Kyungsang [2 ,3 ,4 ]
Kalra, Mannudeep K. [3 ,5 ]
Singh, Ramandeep [3 ]
Li, Liang [1 ]
Li, Quanzheng [2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[2] Massachusetts Gen Hosp, Ctr Adv Med Comp & Anal, Boston, MA 02114 USA
[3] Harvard Med Sch, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
基金
国家重点研发计划;
关键词
Noise2Noise; spectral CT; material decomposition; denoising; self-supervised deep learning; DUAL-ENERGY CT; X-RAY CT; STATISTICAL IMAGE-RECONSTRUCTION; CONVOLUTIONAL NEURAL-NETWORK; MULTIMATERIAL DECOMPOSITION; COMPUTED-TOMOGRAPHY; ALGORITHM;
D O I
10.1088/1361-6560/ac0afd
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Compared to conventional computed tomography (CT), spectral CT can provide the capability of material decomposition, which can be used in many clinical diagnosis applications. However, the decomposed images can be very noisy due to the dose limit in CT scanning and the noise magnification of the material decomposition process. To alleviate this situation, we proposed an iterative one-step inversion material decomposition algorithm with a Noise2Noise prior. The algorithm estimated material images directly from projection data and used a Noise2Noise prior for denoising. In contrast to supervised deep learning methods, the designed Noise2Noise prior was built based on self-supervised learning and did not need external data for training. In our method, the data consistency term and the Noise2Noise network were alternatively optimized in the iterative framework, respectively, using a separable quadratic surrogate (SQS) and the Adam algorithm. The proposed iterative algorithm was validated and compared to other methods on simulated spectral CT data, preclinical photon-counting CT data and clinical dual-energy CT data. Quantitative analysis showed that our proposed method performs promisingly on noise suppression and structure detail recovery.
引用
收藏
页数:17
相关论文
共 61 条
[1]   MARS spectral molecular imaging of lamb tissue: data collection and image analysis [J].
Aamir, R. ;
Chernoglazov, A. ;
Bateman, C. J. ;
Butler, A. P. H. ;
Butler, P. H. ;
Anderson, N. G. ;
Bell, S. T. ;
Panta, R. K. ;
Healy, J. L. ;
Mohr, J. L. ;
Rajendran, K. ;
Walsh, M. F. ;
de Ruiter, N. ;
Gieseg, S. P. ;
Woodfield, T. ;
Renaud, P. F. ;
Brooke, L. ;
Abdul-Majid, S. ;
Clyne, M. ;
Glendenning, R. ;
Bones, P. J. ;
Billinghurst, M. ;
Bartneck, C. ;
Mandalika, H. ;
Grasset, R. ;
Schleich, N. ;
Scott, N. ;
Nik, S. J. ;
Opie, A. ;
Janmale, T. ;
Tang, D. N. ;
Kim, D. ;
Doesburg, R. M. ;
Zainon, R. ;
Ronaldson, J. P. ;
Cook, N. J. ;
Smithies, D. J. ;
Hodge, K. .
JOURNAL OF INSTRUMENTATION, 2014, 9
[2]   Learned Primal-Dual Reconstruction [J].
Adler, Jonas ;
Oktem, Ozan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1322-1332
[3]   ENERGY-SELECTIVE RECONSTRUCTIONS IN X-RAY COMPUTERIZED TOMOGRAPHY [J].
ALVAREZ, RE ;
MACOVSKI, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1976, 21 (05) :733-744
[4]  
[Anonymous], 2018, ARXIV180304189
[5]  
[Anonymous], 2016, TensorFlow: large-scale machine learning on heterogeneous distributed systems
[6]   An algorithm for constrained one-step inversion of spectral CT data [J].
Barber, Rina Foygel ;
Sidky, Emil Y. ;
Schmidt, Taly Gilat ;
Pan, Xiaochuan .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (10) :3784-3818
[7]   A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography [J].
Cai, C. ;
Rodet, T. ;
Legoupil, S. ;
Mohammad-Djafari, A. .
MEDICAL PHYSICS, 2013, 40 (11)
[8]   Iodine Quantification With Dual-Energy CT: Phantom Study and Preliminary Experience With Renal Masses [J].
Chandarana, Hersh ;
Megibow, Alec J. ;
Cohen, Benjamin A. ;
Srinivasan, Ramya ;
Kim, Danny ;
Leidecker, Christianne ;
Macari, Michael .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (06) :W693-W700
[9]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[10]   Robust multimaterial decomposition of spectral CT using convolutional neural networks [J].
Chen, Zhengyang ;
Li, Liang .
OPTICAL ENGINEERING, 2019, 58 (01)