Mixed finite element methods for generalized forchheimer flow in porous media

被引:80
作者
Park, EJ [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
non-Darcy flow; Forchheimer's law; mixed methods; error estimates;
D O I
10.1002/num.20035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mixed finite element methods are analyzed for the approximation of the solution of the system of equations that describes the flow of a single-phase fluid in a porous medium in R-d, d less than or equal to 3, subject to Forchhheimer's law-a nonlinear form of Darcy's law. Existence and uniqueness of the approximation are proved, and optimal order error estimates in L-infinity(J; L-2(Omega)) and in Linfinity(J; H(div; Omega)) are demonstrated for the pressure and momentum, respectively. Error estimates are also derived in L-infinity(J; L-infinity(Omega)) for the pressure. (C) 2004 Wiley Periodicals. Inc.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 32 条
  • [1] Ahmed N., 1969, Journal of the Hydraulic Division: Proceedings of the American Society of Civil Engineers, V95, P1847, DOI [10.1061/JYCEAJ.0002193, DOI 10.1061/JYCEAJ.0002193]
  • [2] [Anonymous], 1991, MAT APLIC COMP
  • [3] [Anonymous], 1993, BOUND VALUE PROBL
  • [4] Barenblatt GI, 1990, THEORY FLUID FLOWS N
  • [5] Bear J., 1998, Dynamics of Fluids in Porous Media. Civil and Mechanical Engineering
  • [6] Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory
    Bennethum, LS
    Giorgi, T
    [J]. TRANSPORT IN POROUS MEDIA, 1997, 26 (03) : 261 - 275
  • [7] BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
  • [8] Chipot M, 1997, MATH METHOD APPL SCI, V20, P1045, DOI 10.1002/(SICI)1099-1476(199708)20:12<1045::AID-MMA900>3.0.CO
  • [9] 2-3
  • [10] CHOU SH, 1991, MATH COMPUT, V57, P507, DOI 10.1090/S0025-5718-1991-1094942-7