Tunable broadband terahertz metamaterial absorber based on vanadium dioxide

被引:38
|
作者
Yang, Guishuang [1 ]
Yan, Fengping [1 ]
Du, Xuemei [1 ]
Li, Ting [1 ]
Wang, Wei [1 ]
Lv, Yuling [1 ]
Zhou, Hong [2 ]
Hou, Yafei [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Osaka Inst Technol, Dept Elect Informat & Commun Engn, Asahi Ku, 5-16-1 Omiya, Osaka 5358585, Japan
[3] Okayama Univ, Grad Sch Nat Sci & Technol, 1-1-1 Tsushimanaka, Okayama, Okayama 7008530, Japan
基金
中国国家自然科学基金;
关键词
PERFECT ABSORBER;
D O I
10.1063/5.0082295
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The special electromagnetic properties of metamaterials have contributed to the development of terahertz technology, and terahertz broadband absorbers for various applications have been investigated. The design of metamaterial absorbers with tunability is in a particularly attractive position. In this work, a tunable broadband terahertz metamaterial absorber is proposed based on the phase transition material vanadium dioxide (VO2). The simulation results show that an excellent absorption bandwidth reaches 3.78 THz with the absorptivity over 90% under normal incidence. The absorptivity of the proposed structure can be dynamically tuned from 2.7% to 98.9% by changing the conductivity of VO2, which changes the structure from a perfect reflector to an absorber. An excellent amplitude modulation with the absorptivity is realized. The mechanism of broadband absorption is explored by analyzing the electric field distribution of the absorber based on impedance matching theory. In addition, it also has the advantage of polarization and incident angle insensitivity. The proposed absorber may have a wide range of promising applications in areas such as terahertz imaging, sensing, and detection.(c) 2022 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide
    Dao, Ri-na
    Kong, Xin-ru
    Zhang, Hai-feng
    Su, Xin-ran
    OPTIK, 2019, 180 : 619 - 625
  • [2] Broadband terahertz metamaterial absorber with a tunable performance based on vanadium dioxide
    Hongyan Lin
    Yuke Zou
    Yangkuan Wu
    Xingzhu Wang
    Huaxin Zhu
    Xiangyang Zhang
    Han Xiong
    Ben-Xin Wang
    Applied Physics A, 2023, 129
  • [3] Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiao, Xiao-Fei
    Zhang, Zi-Heng
    Li, Tong
    Xu, Yun
    Song, Guo-Feng
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 9
  • [4] Broadband terahertz metamaterial absorber with a tunable performance based on vanadium dioxide
    Lin, Hongyan
    Zou, Yuke
    Wu, Yangkuan
    Wang, Xingzhu
    Zhu, Huaxin
    Zhang, Xiangyang
    Xiong, Han
    Wang, Ben-Xin
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (08):
  • [5] Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide
    Liu Su-ya-la-tu
    Wang Zong-li
    Pang Hui-zhong
    Tian Hu-qiang
    Wang Xin
    Wang Jun-lin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (04) : 1257 - 1263
  • [6] Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide and Graphene
    Zheng, Laifang
    Feng, Rui
    Shi, Huanting
    Li, Xuanjing
    MICROMACHINES, 2023, 14 (09)
  • [7] Vanadium dioxide-based tunable broadband metamaterial absorber in the terahertz
    Zhu, Yuqi
    MATERIALS RESEARCH EXPRESS, 2025, 12 (01)
  • [8] Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiang, Gong
    Rong, Zong
    Hui, Li
    Tao, Duan
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (03)
  • [9] Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber
    Huan Liu
    Zhi-Hang Wang
    Lin Li
    Ya-Xian Fan
    Zhi-Yong Tao
    Scientific Reports, 9
  • [10] Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber
    Liu, Huan
    Wang, Zhi-Hang
    Li, Lin
    Fan, Ya-Xian
    Tao, Zhi-Yong
    SCIENTIFIC REPORTS, 2019, 9 (1)