Reverse Water-Gas Shift Iron Catalyst Derived from Magnetite

被引:46
作者
Chou, Chen-Yu [1 ]
Loiland, Jason A. [1 ]
Lobo, Raul F. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA
关键词
RWGS; iron oxides; CO2; conversion; gas-switching; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; CO2; HYDROGENATION; KINETICS; REDUCTION; STABILITY; OXIDES; SENSITIVITY; CONVERSION; MECHANISM;
D O I
10.3390/catal9090773
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic properties of unsupported iron oxides, specifically magnetite (Fe3O4), were investigated for the reverse water-gas shift (RWGS) reaction at temperatures between 723 K and 773 K and atmospheric pressure. This catalyst exhibited a fast catalytic CO formation rate (35.1 mmol g(cat.)(-1)), high turnover frequency (0.180 s(-1)), high CO selectivity (>99%), and high stability (753 K, 45000 cm(3) h(-1) g(cat.)(-1)) under a 1:1 H-2 to CO2 ratio. Reaction rates over the Fe3O4 catalyst displayed a strong dependence on H-2 partial pressure (reaction order of similar to 0.8) and a weaker dependence on CO2 partial pressure (reaction order of 0.33) under an equimolar flow of both reactants. X-ray powder diffraction patterns and XPS spectra reveal that the bulk composition and structure of the post-reaction catalyst was formed mostly of metallic Fe and Fe3C, while the surface contained Fe2+, Fe3+, metallic Fe and Fe3C. Catalyst tests on pure Fe3C (iron carbide) suggest that Fe3C is not an effective catalyst for this reaction at the conditions investigated. Gas-switching experiments (CO2 or H-2) indicated that a redox mechanism is the predominant reaction pathway.
引用
收藏
页数:17
相关论文
共 46 条
[11]   Pulse-response TAP studies of the reverse water-gas shift reaction over a Pt/CeO2 catalyst [J].
Goguet, A ;
Shekhtman, SO ;
Burch, R ;
Hardacre, C ;
Meunier, E ;
Yablonsky, GS .
JOURNAL OF CATALYSIS, 2006, 237 (01) :102-110
[12]   Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process) [J].
Joo, OS ;
Jung, KD ;
Moon, I ;
Rozovskii, AY ;
Lin, GI ;
Han, SH ;
Uhm, SJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (05) :1808-1812
[13]   Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres [J].
Jozwiak, W. K. ;
Kaczmarek, E. ;
Maniecki, T. P. ;
Ignaczak, W. ;
Maniukiewicz, W. .
APPLIED CATALYSIS A-GENERAL, 2007, 326 (01) :17-27
[14]   "Redox" vs "associative formate with -OH group regeneration" WGS reaction mechanism on Pt/CeO2: Effect of platinum particle size [J].
Kalamaras, Christos M. ;
Americanou, Sofia ;
Efstathiou, Angelos M. .
JOURNAL OF CATALYSIS, 2011, 279 (02) :287-300
[15]   Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability [J].
Kim, Dae Han ;
Han, Sang Wook ;
Yoon, Hye Soo ;
Kim, Young Dok .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 23 :67-71
[16]   The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts [J].
Kim, Sung Su ;
Lee, Hyun Hee ;
Hong, Sung Chang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 119 :100-108
[17]   A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts [J].
Kim, Sung Su ;
Lee, Hyun Hee ;
Hong, Sung Chang .
APPLIED CATALYSIS A-GENERAL, 2012, 423 :100-107
[18]   Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? [J].
Kunkes, Edward L. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Schloegl, Robert ;
Behrens, Malte .
JOURNAL OF CATALYSIS, 2015, 328 :43-48
[19]   The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions [J].
Lee, Dae-Won ;
Lee, Myung Suk ;
Lee, Joon Yeob ;
Kim, Seongmin ;
Eom, Hee-Jun ;
Moon, Dong Ju ;
Lee, Kwan-Young .
CATALYSIS TODAY, 2013, 210 :2-9
[20]   Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation [J].
Liu, Y ;
Liu, DZ .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (04) :351-354