Reverse Water-Gas Shift Iron Catalyst Derived from Magnetite

被引:46
作者
Chou, Chen-Yu [1 ]
Loiland, Jason A. [1 ]
Lobo, Raul F. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA
关键词
RWGS; iron oxides; CO2; conversion; gas-switching; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; CO2; HYDROGENATION; KINETICS; REDUCTION; STABILITY; OXIDES; SENSITIVITY; CONVERSION; MECHANISM;
D O I
10.3390/catal9090773
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic properties of unsupported iron oxides, specifically magnetite (Fe3O4), were investigated for the reverse water-gas shift (RWGS) reaction at temperatures between 723 K and 773 K and atmospheric pressure. This catalyst exhibited a fast catalytic CO formation rate (35.1 mmol g(cat.)(-1)), high turnover frequency (0.180 s(-1)), high CO selectivity (>99%), and high stability (753 K, 45000 cm(3) h(-1) g(cat.)(-1)) under a 1:1 H-2 to CO2 ratio. Reaction rates over the Fe3O4 catalyst displayed a strong dependence on H-2 partial pressure (reaction order of similar to 0.8) and a weaker dependence on CO2 partial pressure (reaction order of 0.33) under an equimolar flow of both reactants. X-ray powder diffraction patterns and XPS spectra reveal that the bulk composition and structure of the post-reaction catalyst was formed mostly of metallic Fe and Fe3C, while the surface contained Fe2+, Fe3+, metallic Fe and Fe3C. Catalyst tests on pure Fe3C (iron carbide) suggest that Fe3C is not an effective catalyst for this reaction at the conditions investigated. Gas-switching experiments (CO2 or H-2) indicated that a redox mechanism is the predominant reaction pathway.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[2]   Study of the oxide/carbide transition on iron surfaces during catalytic coke formation [J].
Bonnet, F ;
Ropital, F ;
Lecour, P ;
Espinat, D ;
Huiban, Y ;
Gengembre, L ;
Berthier, Y ;
Marcus, P .
SURFACE AND INTERFACE ANALYSIS, 2002, 34 (01) :418-422
[3]   Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst [J].
Chen, CS ;
Cheng, WH ;
Lin, SS .
APPLIED CATALYSIS A-GENERAL, 2003, 238 (01) :55-67
[4]   Enhanced activity and stability of a Cu/SiO2 catalyst for the reverse water gas shift reaction by an iron promoter [J].
Chen, CS ;
Cheng, WH ;
Lin, SS .
CHEMICAL COMMUNICATIONS, 2001, (18) :1770-1771
[5]   Fischer-Tropsch Synthesis: Reaction mechanisms for iron catalysts [J].
Davis, Burtron H. .
CATALYSIS TODAY, 2009, 141 (1-2) :25-33
[6]   Stability and Reactivity of ε-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling μc [J].
de Smit, Emiel ;
Cinquini, Fabrizio ;
Beale, Andrew M. ;
Safonova, Olga V. ;
van Beek, Wouter ;
Sautet, Philippe ;
Weckhuysen, Bert M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (42) :14928-14941
[7]   Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water-gas shift reaction [J].
Fishman, Zachary S. ;
He, Yulian ;
Yang, Ke R. ;
Lounsbury, Amanda W. ;
Zhu, Junqing ;
Thanh Minh Tran ;
Zimmerman, Julie B. ;
Batista, Victor S. ;
Pfefferle, Lisa D. .
NANOSCALE, 2017, 9 (35) :12984-12995
[8]   MECHANISM OF THE REVERSE WATER GAS SHIFT REACTION OVER CU/ZNO CATALYST [J].
FUJITA, S ;
USUI, M ;
TAKEZAWA, N .
JOURNAL OF CATALYSIS, 1992, 134 (01) :220-225
[9]   The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity [J].
Fujitani, T ;
Nakamura, J .
CATALYSIS LETTERS, 1998, 56 (2-3) :119-124
[10]   Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts [J].
Gines, MJL ;
Marchi, AJ ;
Apesteguia, CR .
APPLIED CATALYSIS A-GENERAL, 1997, 154 (1-2) :155-171