A conservative and well-balanced surface tension model
被引:36
作者:
Abu-Al-Saud, Moataz O.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USAStanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
Abu-Al-Saud, Moataz O.
[1
]
Popinet, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Ctr Natl Rech Sci, Inst Jean Le Rond Alembert, F-75005 Paris, FranceStanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
Popinet, Stephane
[2
]
Tchelepi, Hamdi A.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USAStanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
Tchelepi, Hamdi A.
[1
]
机构:
[1] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
[2] Sorbonne Univ, Ctr Natl Rech Sci, Inst Jean Le Rond Alembert, F-75005 Paris, France
This article describes a new numerical scheme to model surface tension for an interface represented by a level-set function. In contrast with previous schemes, the method conserves fluid momentum and recovers Laplace's equilibrium exactly. It is formally consistent and does not require the introduction of an arbitrary interface thickness, as is classically done when approximating surface-to-volume operators using Dirac functions. Variable surface tension is naturally taken into account by the scheme and accurate solutions are obtained for thermocapillary flows. Application to the Marangoni breakup of an axisymmetric droplet shows that the method is robust also in the case of changes in the interface topology. (C) 2018 Elsevier Inc. All rights reserved.
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Ecole Polytech, Palaiseau, FranceUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
du Chene, Antoine
;
Min, Chohong
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South KoreaUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Min, Chohong
;
Gibou, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Ecole Polytech, Palaiseau, FranceUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
du Chene, Antoine
;
Min, Chohong
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South KoreaUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Min, Chohong
;
Gibou, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA