Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum: a comparative study

被引:54
作者
Waskiewicz, A. [1 ]
Golinski, P. [1 ]
Karolewski, Z. [2 ]
Irzykowska, L. [2 ]
Bocianowski, J. [3 ]
Kostecki, M. [1 ]
Weber, Z. [2 ]
机构
[1] Poznan Univ Life Sci, Dept Chem, PL-60625 Poznan, Poland
[2] Poznan Univ Life Sci, Dept Phytopathol, PL-60594 Poznan, Poland
[3] Poznan Univ Life Sci, Dept Math & Stat Methods, PL-60637 Poznan, Poland
来源
FOOD ADDITIVES AND CONTAMINANTS PART A-CHEMISTRY ANALYSIS CONTROL EXPOSURE & RISK ASSESSMENT | 2010年 / 27卷 / 05期
关键词
high-performance liquid chromatography (HPLC); mycotoxins; fungi; ASPARAGUS SPEARS; MAIZE GRAIN; MONILIFORMIN; MYCOTOXINS; WHEAT; VERTICILLIOIDES; PATHOGENICITY; BEAUVERICIN; FUSAPROLIFERIN; EPIDEMIOLOGY;
D O I
10.1080/19440040903551947
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The principal aim of this study was to estimate the formation of fumonisins (FB1 and FB2), moniliformin (MON), and ergosterol (ERG) by Fusarium oxysporum and Fusarium proliferatum, while the formation of beauvericin (BEA) was estimated by the latter Fusarium species only. Moreover, the effect of temperature on the biosynthesis of mycotoxins was also evaluated. Fumonisins were formed by F. proliferatum, with the highest yield at 18 degrees C (720.0-1976.6 mu g g-1 for FB1, 74.2-670.8 mu g g-1 for FB2) and only by three of four F. oxysporum strains at a very low level (0.02-4.77 mu g g-1 for FB1, 0.02-2.15 mu g g-1 for FB2). The amount of MON formed by F. proliferatum was the highest (p 0.001) at 32 degrees C (3056.87 mu g g-1), while MON biosynthesis by F. oxysporum was lower 227.54 mu g g-1 (p 0.001). BEA was produced by F. proliferatum with the highest level at 25 degrees C (p 0.001). ERG-recognized as an indicator of fungal biomass development and as a consequence of mycotoxin formation-was found at the highest concentration at a biosynthesis temperature of 25 degrees C for F. proliferatum and F. oxysporum (p 0.001).
引用
收藏
页码:608 / 615
页数:8
相关论文
共 37 条
  • [1] Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens in Canadian hard and soft wheat
    Abramson, D
    Gan, Z
    Clear, RM
    Gilbert, J
    Marquardt, RR
    [J]. INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1998, 45 (03) : 217 - 224
  • [2] BOOTH C, 1971, GENUS FUSARIUM, P32
  • [3] Bottalico A., 1998, Journal of Plant Pathology, V80, P85
  • [4] The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production
    Brown, Daren W.
    Butchko, Robert A. E.
    Busman, Mark
    Proctor, Robert H.
    [J]. EUKARYOTIC CELL, 2007, 6 (07) : 1210 - 1218
  • [5] Wheat kernel black point and fumonisin contamination by Fusarium proliferatum
    Desjardins, A. E.
    Busman, M.
    Proctor, R. H.
    Stessman, R.
    [J]. FOOD ADDITIVES AND CONTAMINANTS, 2007, 24 (10): : 1131 - 1137
  • [6] Epidemiology and management of the diseases causal to asparagus decline
    Elmer, WH
    Johnson, DA
    Mink, GI
    [J]. PLANT DISEASE, 1996, 80 (02) : 117 - 125
  • [7] GERLACH W, 1982, GENUS FUSARIUM PICTO, P9
  • [8] Hibar K., 2006, Plant Pathol J, V5, P233, DOI [10.3923/ppj.2006.233.238, DOI 10.3923/ppj.2006.233.238, DOI 10.3923/PPJ.2006.233.238]
  • [9] Fumonisin production in rice cultures of Fusarium verticillioides under different incubation conditions using an optimized analytical method
    Hinojo, MJ
    Medina, A
    Valle-Algarra, FM
    Gimeno-Adelantado, JV
    Jiménez, M
    Mateo, R
    [J]. FOOD MICROBIOLOGY, 2006, 23 (02) : 119 - 127
  • [10] Genetic variation, pathogenicity and mycelial growth rate differentiation between Gaeumannomyces graminis var. tritici isolates derived from winter and spring wheat
    Irzykowska, L.
    Bocianowski, J.
    [J]. ANNALS OF APPLIED BIOLOGY, 2008, 152 (03) : 369 - 375