TOPOLOGICAL TRANSITIVITY AND CHAOS OF GROUP ACTIONS ON DENDRITES

被引:6
作者
Wang, Suhua [1 ]
Shi, Enhui [1 ]
Zhou, Lizhen [1 ]
Su, Xunli [2 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Suzhou Univ Sci & Technol, Dept Math, Suzhou 215011, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 12期
基金
中国国家自然科学基金;
关键词
Topological transitivity; weak mixing; chaos; group action; dendrite; GEOMETRIC ENTROPY; PEANO-CONTINUA; MAPS; SETS;
D O I
10.1142/S0218127409025274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that each weakly mixing group action on a dendrite must have a ping-pong game, and has positive geometric entropy when the acting group is finitely generated. As a corollary, we prove that no nilpotent group action on a dendrite is weakly mixing. At last, we show that each dendrite admits no chaotic group actions.
引用
收藏
页码:4165 / 4174
页数:10
相关论文
共 25 条
  • [1] Acosta G, 2007, HOUSTON J MATH, V33, P753
  • [2] [Anonymous], 1986, The beauty of fractals: images of complex dynamical systems
  • [3] [Anonymous], 1994, J. Amer. Math. Soc., DOI DOI 10.2307/2152785
  • [4] TOWARD A THEORY OF FORCING ON MAPS OF TREES
    BALDWIN, S
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05): : 1307 - 1318
  • [5] Continuous itinerary functions and dendrite maps
    Baldwin, Stewart
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (16) : 2889 - 2938
  • [6] Minimal sets on graphs and dendrites
    Balibrea, F
    Hric, R
    Snoha, L
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1721 - 1725
  • [7] Beardon A. F., 1991, Graduate Texts in Mathematics, V132
  • [8] Hausdorff dimension and dendritic limit sets
    Bowditch, BH
    [J]. MATHEMATISCHE ANNALEN, 2005, 332 (03) : 667 - 676
  • [9] Chaotic actions of free groups
    Cairns, G
    Kolganova, A
    [J]. NONLINEARITY, 1996, 9 (04) : 1015 - 1021
  • [10] Cairns G., 1995, Enseign. Math. (2), V41, P123, DOI DOI 10.5169/SEALS-61820