MIRROR SYMMETRY AS AN OPERATOR ALGEBRA I N THE NONCOMMUTATIVE SPACE-TIME GEOMETRY

被引:0
作者
Khoroshkov, Yu. V. [1 ]
机构
[1] 4 Ivana Svitlychnogo Str,Apt 40, UA-03087 Kiev, Ukraine
来源
UKRAINIAN JOURNAL OF PHYSICS | 2022年 / 67卷 / 02期
关键词
mirror symmetry; noncommutative geometry; Clifford algebra; correlation;
D O I
10.15407/ujpe67.2.117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analysis of the geometric and algebraic properties of mirror mappings allowed the latter to be used as the operator algebra of a noncommutative geometry. The coordinates of the noncommutative geometry are auto- or cross-correlation coordinates in the mirror-mapped spaces. A particular case of the six-dimensional Kohler manifold which is mapped on the noncommutative geometry with the vector Clifford algebra Cl(4 )has been considered. This mapping corresponds to a tetraquark composed from two quark-anti-quark pairs with the charges +/- 2/3q taken from different generations.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 8 条
[1]  
Connes A., 2007, Noncommutative Geometry, Quantum Fields, and Motives
[2]  
Green MB, 1988, Cambridge Monogr. Math. Phys., V2
[3]  
Greene Brian, 2010, ELEGANT UNIVERSE SUP
[4]  
Hori K., 2003, MIRROR SYMMETRY, V1
[5]   MIRROR SYMMETRY AS A BASIS FOR CONSTRUCTING A SPACE-TIME CONTINUUM [J].
Khoroshkov, Yu. V. .
UKRAINIAN JOURNAL OF PHYSICS, 2015, 60 (05) :468-477
[6]  
Schwarz H., 1988, SUPERSTRING THEORY, V1
[7]  
Strominger A., ARXIV HEP TH9606040V
[8]  
Zinn-Justin J., 2005, Oxford Graduate Texts in Mathematics