Grading learning for blind source separation

被引:15
|
作者
Zhang, XD [1 ]
Zhu, XL
Bao, Z
机构
[1] Xidian Univ, Key Lab Radar Signal Proc, Xian 710071, Peoples R China
[2] Tsinghua Univ, Dept Automat, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
来源
关键词
blind source separation; independent component analysis; neural computation; adaptive learning;
D O I
10.1360/03yf9003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By generalizing the learning rate parameter to a learning rate matrix, this paper proposes a grading learning algorithm for blind source separation. The-whole learning process is divided into three stages: initial stage, capturing stage and tracking stage. In different stages, different learning rates are used for each output component, which is determined by its dependency on other output components. It is shown that the grading learning algorithm is equivariant and can keep the separating matrix from becoming singular. Simulations show that the proposed algorithm can achieve faster convergence, better steady-state performance and higher numerical robustness, as compared with the existing algorithms using fixed, time-descending and adaptive learning rates.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [1] Grading learning for blind source separation
    张贤达
    朱孝龙
    保铮
    ScienceinChina(SeriesF:InformationSciences), 2003, (01) : 31 - 44
  • [2] Grading learning for blind source separation
    Xianda Zhang
    Xiaolong Zhu
    Zheng Bao
    Science in China Series F, 2003, 46 : 31 - 44
  • [3] 'Mechanical' neural learning for blind source separation
    Fiori, S
    ELECTRONICS LETTERS, 1999, 35 (22) : 1963 - 1964
  • [4] A constraint learning algorithm for blind source separation
    Nakayama, K
    Hirano, A
    Nitta, M
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL III, 2000, : 327 - 332
  • [5] Nonholonomic orthogonal learning algorithms for blind source separation
    Amari, S
    Chen, TP
    Cichocki, A
    NEURAL COMPUTATION, 2000, 12 (06) : 1463 - 1484
  • [6] Blind source separation with kurtosis adaptive learning rate
    Sun, Shou-Yu
    Zheng, Jun-Li
    Wu, Li-Jiang
    Zhao, Ying
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2005, 33 (03): : 473 - 476
  • [7] Nonlinear blind source separation by variational Bayesian learning
    Valpola, H
    Oja, E
    Ilin, A
    Honkela, A
    Karhunen, J
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (03) : 532 - 541
  • [8] Multi-Task Learning for Blind Source Separation
    Du, Bo
    Wang, Shaodong
    Xu, Chang
    Wang, Nan
    Zhang, Liangpei
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4219 - 4231
  • [9] Stability analysis of learning algorithms for blind source separation
    Amari, S
    Chen, TP
    Cichocki, A
    NEURAL NETWORKS, 1997, 10 (08) : 1345 - 1351
  • [10] Optimal sparse representations for blind source separation and blind deconvolution: A learning approach
    Bronstein, MM
    Bronstein, AM
    Zibulevsky, M
    Zeevi, YY
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1815 - 1818