Sorting stably, in place, with O (n log n) comparisons and O(n) moves

被引:2
作者
Franceschini, Gianni [1 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56127 Pisa, Italy
关键词
D O I
10.1007/s00224-006-1311-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We settle a long-standing open question, namely whether it is possible to sort a sequence of n elements stably (i.e., preserving the original relative order of the equal elements), using O(1) auxiliary space and performing O(n log n) comparisons and O(n) data moves. Munro and Raman stated this problem in J. Algorithms (13, 1992) and gave an in-place but unstable sorting algorithm that performs O(n) data moves and O(n(1+epsilon)) comparisons. Subsequently (Algorithmica, 16, 1996) they presented a stable algorithm with these same bounds. Recently, Franceschini and Geffert (FOCS 2003) presented an unstable sorting algorithm that matches the asymptotic lower bounds on all computational resources.
引用
收藏
页码:327 / 353
页数:27
相关论文
共 19 条
[1]  
BINGCHAO H, 1986, BIT, V26, P127
[2]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[3]  
DURIAN B, 1986, LECT NOTES COMPUT SC, V233, P283, DOI 10.1007/BFb0016252
[4]   An in-place sorting with O (n log n) comparisons and O (n) Moves [J].
Franceschini, G ;
Geffert, V .
44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, :242-250
[5]   QUICKSORT [J].
HOARE, CAR .
COMPUTER JOURNAL, 1962, 5 (01) :10-&
[6]  
Itai A., 1981, LECTURE NOTES COMPUT, V115, P417
[7]  
KATAJAINEN J, 1992, LECT NOTES COMPUT SC, V621, P410
[8]   STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME [J].
KATAJAINEN, J ;
PASANEN, T .
BIT NUMERICAL MATHEMATICS, 1992, 32 (04) :580-585
[9]   In-place sorting with fewer moves [J].
Katajainen, J ;
Pasanen, TA .
INFORMATION PROCESSING LETTERS, 1999, 70 (01) :31-37
[10]  
Knuth D., 1998, The art of computer programming, in Sorting and Searching, V2