Noncommutative instantons via dressing and splitting approaches -: art. no. 060

被引:0
作者
Horváth, Z
Lechtenfeld, O
Wolf, M
机构
[1] Eotvos Lorand Univ, Dept Theoret Phys, H-1117 Budapest, Hungary
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[3] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
关键词
solitons monopoles and instantons; non-commutative geometry; integrable equations in physics;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Almost all known instanton solutions in noncommutative Yang-Mills theory have been obtained in the modified ADHM scheme. In this paper we employ two alternative methods for the construction of the self-dual U(2) BPST instanton on a noncommutative euclidean four-dimensional space with self-dual noncommutativity tensor. Firstly, we use the method of dressing transformations, an iterative procedure for generating solutions from a given seed solution, and thereby generalize Belavin's and Zakharov's work to the noncommutative setup. Secondly, we relate the dressing approach with Ward's splitting method based on the twistor construction and rederive the solution in this context. It seems feasible to produce nonsingular noncommutative multi-instantons with these techniques.
引用
收藏
页数:19
相关论文
共 56 条
[1]  
Aganagic M, 2001, J HIGH ENERGY PHYS
[2]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[3]   INSTANTONS AND ALGEBRAIC GEOMETRY [J].
ATIYAH, MF ;
WARD, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :117-124
[4]   DRESSING SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :279-306
[5]   YANG-MILLS EQUATIONS AS INVERSE SCATTERING PROBLEM [J].
BELAVIN, AA ;
ZAKHAROV, VE .
PHYSICS LETTERS B, 1978, 73 (01) :53-57
[6]   PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
SCHWARTZ, AS ;
TYUPKIN, YS .
PHYSICS LETTERS B, 1975, 59 (01) :85-87
[7]   Super-Poincare invariant superstring field theory (vol 450, pg 90, 1995) [J].
Berkovits, N .
NUCLEAR PHYSICS B, 1996, 459 (1-2) :439-451
[8]   Covariant field theory for self-dual strings [J].
Berkovits, N ;
Siegel, W .
NUCLEAR PHYSICS B, 1997, 505 (1-2) :139-152
[9]  
BRADEN H, HEPTH9912019
[10]   Notes on noncommutative instantons [J].
Chu, CS ;
Khoze, VV ;
Travaglini, G .
NUCLEAR PHYSICS B, 2002, 621 (1-2) :101-130