Self-Driven Multiplex Reaction: Reactant and Product Diffusion via a Transpiration-Inspired Capillary

被引:5
作者
Chen, Bingda [1 ,2 ]
Qin, Feifei [3 ]
Su, Meng [1 ,2 ]
Zhang, Zeying [1 ,2 ]
Pan, Qi [1 ]
Zou, Miaomiao [1 ,2 ]
Yang, Xu [1 ]
Chen, Sisi [1 ]
Derome, Dominique [4 ]
Carmeliet, Jan [3 ]
Song, Yanlin [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Engn Res Ctr Nanomat Green Printing Techn, Inst Chem, Key Lab Green Printing,Beijing Natl Lab Mol Sci B, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Chair Bldg Phys, Swiss Fed Inst Technol Zurich, CH-8092 Zurich, Switzerland
[4] Univ Sherbrooke, Dept Civil & Bldg Engn, Sherbrooke, PQ J1K 2R1, Canada
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
microchannels; self-driven; multiplex reaction; capillary; diffusion; FLOW; OXIDATION; ARRAYS;
D O I
10.1021/acsami.1c03614
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
When dealing with reactions of a liquid reactant and a solid catalyst, macroreactors with vigorous stirring equipment may be dangerous and cause wastage of energy. Reducing the diffusion distance and promoting reactants to reach the catalyst surface for efficient reaction remain the key challenges. Here, inspired by capillary-driven water motion in plants, we propose to implement a self-driven multiplex reaction (SMR) in nanocatalyst-loaded microchannels. Unlike the classical capillary rise, the droplet in SMR has variable pressure difference, leading to tunable flow velocity for controlling the reaction rate without any auxiliary equipment. The SMR in microchannels contributes to an increase in the reaction rate by more than 2 orders of magnitude compared to that in macroreactors. Specifically, this strategy reduces the reaction volume by 170 times, the catalyst usage by about 12 times, and the energy consumption by 50 times. This apparatus with a small volume and less catalyst content promises to provide an efficient strategy for the precise manipulation of chemical reactions.
引用
收藏
页码:22031 / 22039
页数:9
相关论文
共 42 条
[11]   Liquid flow and control without solid walls [J].
Dunne, Peter ;
Adachi, Takuji ;
Dev, Arvind Arun ;
Sorrenti, Alessandro ;
Giacchetti, Lucas ;
Bonnin, Anne ;
Bourdon, Catherine ;
Mangin, Pierre H. ;
Coey, J. M. D. ;
Doudin, Bernard ;
Hermans, Thomas M. .
NATURE, 2020, 581 (7806) :58-+
[12]  
Elvira KS, 2013, NAT CHEM, V5, P905, DOI [10.1038/NCHEM.1753, 10.1038/nchem.1753]
[13]  
Frohna K., 2019, HDB ORGANIC MAT ELEC
[14]   Laminar dispersion at high Peacuteclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection with the generalized Leveque problem [J].
Giona, M. ;
Adrover, A. ;
Cerbelli, S. ;
Garofalo, F. .
PHYSICS OF FLUIDS, 2009, 21 (12) :1-20
[15]   Hollow Structured Micro/Nano MoS2 Spheres for High Electrocatalytic Activity Hydrogen Evolution Reaction [J].
Guo, Bangjun ;
Yu, Ke ;
Li, Honglin ;
Song, Haili ;
Zhang, Yuanyuan ;
Lei, Xiang ;
Fu, Hao ;
Tan, Yinghua ;
Zhu, Zigiang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5517-5525
[16]   Microfluidic synthesis of fatty acid esters: Integration of dynamic combinatorial chemistry and scale effect [J].
He, Wei ;
Gao, Yuan ;
Zhu, Guiqin ;
Wu, Hao ;
Fang, Zheng ;
Guo, Kai .
CHEMICAL ENGINEERING JOURNAL, 2020, 381
[17]   Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization [J].
He, Yingxin ;
Rezaei, Fateme ;
Kapila, Shubhender ;
Rownaghi, Ali A. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (19) :16288-16295
[18]  
Holyst R, 2019, NATURE, V574, P181, DOI 10.1038/d41586-019-02973-y
[19]   Ammoxidation of propylene to acrylonitrile in a bench-scale circulating fluidized bed reactor [J].
Hu, Yongqi ;
Zhao, Fengyun ;
Wei, Fei ;
Jin, Yong .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (10) :918-923
[20]   Continuous Synthesis of tert-Butyl Peroxypivalate using a Single-Channel Microreactor Equipped with Orifices as Emulsification Units [J].
Illg, Tobias ;
Hessel, Volker ;
Loeb, Patrick ;
Schouten, Jaap C. .
CHEMSUSCHEM, 2011, 4 (03) :392-398