RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

被引:14
作者
Baker, Oliver [1 ]
Gupta, Ashish [2 ]
Obst, Mandy [1 ,2 ]
Zhang, Youming [3 ]
Anastassiadis, Konstantinos [1 ]
Fu, Jun [2 ,3 ]
Stewart, A. Francis [2 ]
机构
[1] Tech Univ Dresden, Ctr Biotechnol, Stem Cell Engn, BioInnovat Zentrum, Tatzberg 47, D-01307 Dresden, Germany
[2] Tech Univ Dresden, Ctr Biotechnol, Genom, BioInnovat Zentrum, Tatzberg 47, D-01307 Dresden, Germany
[3] Shandong Univ, Helmholtz Joint Inst Biotechnol, State Key Lab Microbial Technol, Shanda Nanlu 27, Jinan 250100, Peoples R China
关键词
GREEN FLUORESCENT PROTEIN; HOMOLOGOUS RECOMBINATION; DEGRON SYSTEM; CELLS; GENE; DEGRADATION; EXPLORATION; EXPRESSION; RESOURCE; PIPELINE;
D O I
10.1038/srep25529
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (similar to 1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E-coli, mammalian cells and mice [J].
Anastassiadis, Konstantinos ;
Fu, Jun ;
Patsch, Christoph ;
Hu, Shengbiao ;
Weidlich, Stefanie ;
Duerschke, Kristin ;
Buchholz, Frank ;
Edenhofer, Frank ;
Stewart, A. Francis .
DISEASE MODELS & MECHANISMS, 2009, 2 (9-10) :508-515
[2]  
Angrand P O, 1999, Nucleic Acids Res, V27, pe16, DOI 10.1093/nar/27.17.e16
[3]   AN IMMUNOLOGICAL ANALYSIS OF TY1 VIRUS-LIKE PARTICLE STRUCTURE [J].
BROOKMAN, JL ;
STOTT, AJ ;
CHEESEMAN, PJ ;
BURNS, NR ;
ADAMS, SE ;
KINGSMAN, AJ ;
GULL, K .
VIROLOGY, 1995, 207 (01) :59-67
[4]   Genome Engineering with Targetable Nucleases [J].
Carroll, Dana .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 83, 2014, 83 :409-439
[5]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[6]   Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System [J].
Chen, Baohui ;
Gilbert, Luke A. ;
Cimini, Beth A. ;
Schnitzbauer, Joerg ;
Zhang, Wei ;
Li, Gene-Wei ;
Park, Jason ;
Blackburn, Elizabeth H. ;
Weissman, Jonathan S. ;
Qi, Lei S. ;
Huang, Bo .
CELL, 2013, 155 (07) :1479-1491
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]   Bacterial death by DNA gyrase poisoning [J].
Couturier, M ;
Bahassi, E ;
Van Melderen, L .
TRENDS IN MICROBIOLOGY, 1998, 6 (07) :269-275
[9]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[10]   Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains [J].
Feil, R ;
Wagner, J ;
Metzger, D ;
Chambon, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 237 (03) :752-757