Archaeal-type rhodopsins in Chlamydomonas:: model structure and intracellular localization

被引:115
作者
Suzuki, T
Yamasaki, K
Fujita, S
Oda, K
Iseki, M
Yoshida, K
Watanabe, M
Daiyasu, H
Toh, H
Asamizu, E
Tabata, S
Miura, K
Fukuzawa, H
Nakamura, S
Takahashi, T
机构
[1] Toyama Univ, Fac Sci, Toyama 9308555, Japan
[2] Kyoto Univ, Grad Sch Studies, Kyoto 6068502, Japan
[3] Kazusa DNA Res Inst, Chiba 2920812, Japan
[4] Biomol Engn Res Inst, Suita, Osaka 5650871, Japan
[5] Natl Inst Basic Biol, Okazaki, Aichi 4448585, Japan
[6] Japan Adv Inst Adv Sci & Technol, Sch Mat Sci, Tatsunokuchi, Ishikawa 9231292, Japan
关键词
retinal; photomovement; bacteriorhodopsin; sensory rhodopsin; ion channel; photoreceptor;
D O I
10.1016/S0006-291X(02)03079-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phototaxis in the unicellular green alga Chlamydomonas reinhardtii is mediated by rhodopsin-type photoreceptor(s). Recent expressed sequence tag database from the Kazusa DNA Research Institute has provided the basis for unequivocal identification of two archaeal-type rhodopsins in it. Here we demonstrate that one is located near the eyespot, wherein the photoreceptor(s) has long been thought to be enriched, along with the results of bioinformatic analyses. Secondary structure prediction showed that the second putative transmembrane helices (helix B) of these rhodopsins are rich in glutamate residues, and homology modeling suggested that some additional intra- or intermolecular interactions are necessary for opsin-like folding of the N-terminal ca. 300-aa membrane spanning domains of 712 and 737-aa polypeptides. These results complement physiological and electrophysiological experiments combined with the manipulation of their expression [O.A. Sineshchekov, K.H. Jung, J.H. Spudich, Proc. Natl. Sci. USA 99 (2002) 8689; G. Nagel, D. Olig, M. Fuhrmann, S. Kateriya, A.M. Musti, E. Bamberg, P. Hegemann, Science 296 (2002) 2395]. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:711 / 717
页数:7
相关论文
共 30 条
  • [1] Asamizu E, 1999, DNA Res, V6, P369, DOI 10.1093/dnares/6.6.369
  • [2] Ausubel F.A., 1997, CURRENT PROTOCOLS MO, DOI DOI 10.1.4
  • [3] Exploiting the past and the future in protein secondary structure prediction
    Baldi, P
    Brunak, S
    Frasconi, P
    Soda, G
    Pollastri, G
    [J]. BIOINFORMATICS, 1999, 15 (11) : 937 - 946
  • [4] Extensive feature detection of N-terminal protein sorting signals
    Bannai, H
    Tamada, Y
    Maruyama, O
    Nakai, K
    Miyano, S
    [J]. BIOINFORMATICS, 2002, 18 (02) : 298 - 305
  • [5] Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea
    Béjà, O
    Aravind, L
    Koonin, EV
    Suzuki, MT
    Hadd, A
    Nguyen, LP
    Jovanovich, S
    Gates, CM
    Feldman, RA
    Spudich, JL
    Spudich, EN
    DeLong, EF
    [J]. SCIENCE, 2000, 289 (5486) : 1902 - 1906
  • [6] Proteorhodopsin phototrophy in the ocean
    Béjà, O
    Spudich, EN
    Spudich, JL
    Leclerc, M
    DeLong, EF
    [J]. NATURE, 2001, 411 (6839) : 786 - 789
  • [7] The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins
    Bieszke, JA
    Braun, EL
    Bean, LE
    Kang, SC
    Natvig, DO
    Borkovich, KA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) : 8034 - 8039
  • [8] CHLAMYRHODOPSIN REPRESENTS A NEW-TYPE OF SENSORY PHOTORECEPTOR
    DEININGER, W
    KROGER, P
    HEGEMANN, U
    LOTTSPEICH, F
    HEGEMANN, P
    [J]. EMBO JOURNAL, 1995, 14 (23) : 5849 - 5858
  • [9] FOSTER KW, 1984, NATURE, V311, P756, DOI 10.1038/311756a0
  • [10] SOLID-STATE C-13 NMR DETECTION OF A PERTURBED 6-S-TRANS CHROMOPHORE IN BACTERIORHODOPSIN
    HARBISON, GS
    SMITH, SO
    PARDOEN, JA
    COURTIN, JML
    LUGTENBURG, J
    HERZFELD, J
    MATHIES, RA
    GRIFFIN, RG
    [J]. BIOCHEMISTRY, 1985, 24 (24) : 6955 - 6962