Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals

被引:4
作者
Huang, Tao [1 ]
机构
[1] NYU Shanghai, NYU ECNU Inst Math Sci, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
关键词
Nematic liquid crystals; heat flow; partial regularity; uniqueness; EQUATIONS;
D O I
10.1142/S0219530515500086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish an epsilon-regularity criterion for any weak solution (u, d) to the nematic liquid crystal flow (1.1) such that (u, del d) is an element of (LtLxq)-L-p for some p >= 2 and q >= n satisfying the condition (1.2). As consequences, we prove the interior smoothness of any such a solution when p > 2 and q > n. We also show that uniqueness holds for the class of weak solutions (u, d) the Cauchy problem of the nematic liquid crystal flow (1.1) that satisfy (u, del d). (LtLxq)-L-p for some p > 2 and q > n satisfying (1.2).
引用
收藏
页码:523 / 536
页数:14
相关论文
共 23 条
[1]   The Navier-Stokes Equations in the Critical Lebesgue Space [J].
Dong, Hongjie ;
Du, Dapeng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) :811-827
[2]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[3]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[4]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[5]  
Hineman JL, 2013, ARCH RATION MECH AN, V210, P177, DOI 10.1007/s00205-013-0643-7
[6]   Global existence of solutions of the simplified Ericksen-Leslie system in dimension two [J].
Hong, Min-Chun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :15-36
[7]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI DOI 10.1002/MANA.3210040121
[8]  
Huang T., 2012, PREPRINT
[9]  
Huang T., 2013, THESIS
[10]   Blow up Criterion for Nematic Liquid Crystal Flows [J].
Huang, Tao ;
Wang, Changyou .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (05) :875-884