Borsuk's antipodal fixed points theorems for compact or condensing set-valued maps

被引:2
作者
Altwaijry, Najla [1 ]
Chebbi, Souhail [2 ]
Hammami, Hakim [3 ]
Gourdel, Pascal [4 ]
机构
[1] King Saud Univ, Coll Sci, Box 2455, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Coll Sci, Math, Box 2455, Riyadh 11451, Saudi Arabia
[3] Coll Telecom & Informat, Riyadh, Saudi Arabia
[4] Univ Paris 1 Pantheon Sorbonne, Paris Sch Econ, CNRS, CES MSE, 106 Blvd Hop, F-75647 Paris 13, France
关键词
Borsuk's antipodal fixed point theorem; approximative selection; antipodally approximable set-valued maps; compact set-valued maps; measure of non-compactness; condensing set-valued maps; HOMOTOPY METHOD;
D O I
10.1515/anona-2016-0128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a generalized version of the well-known Borsuk's antipodal fixed point theorem for a large class of antipodally approachable condensing or compact set-valued maps defined on closed subsets of locally convex topological vector spaces. These results contain corresponding results obtained in the literature for compact set-valued maps with convex values.
引用
收藏
页码:307 / 311
页数:5
相关论文
共 10 条
[1]   A LERAY-SCHAUDER TYPE THEOREM FOR APPROXIMABLE MAPS [J].
BENELMECHAIEKH, H ;
IDZIK, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :105-109
[2]   APPROACHABILITY AND FIXED-POINTS FOR NONCONVEX SET-VALUED MAPS [J].
BENELMECHAIEKH, H ;
DEGUIRE, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 170 (02) :477-500
[3]   Borsuk's antipodal theorem for approachable correspondences [J].
Bonnisseau, J. -M. ;
Chebbi, S. ;
Gourdel, P. ;
Hammami, H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) :3502-3506
[4]  
CELLINA A, 1969, ATTI ACCAD NAZ LIN, V47, P429
[6]   Maximal elements and equilibria for condensing correspondences [J].
Chebbi, S ;
Florenzano, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (08) :995-1002
[7]  
Dugundji J., 2002, FIXED POINT THEORY
[8]  
GORNIEWICZ L, 1989, CR ACAD SCI I-MATH, V308, P449
[9]  
GORNIEWICZ L, 1988, CR ACAD SCI I-MATH, V307, P489
[10]  
PETRYSHYN WV, 1974, T AM MATH SOC, V194, P1