FLUCTUATION-DISSIPATION THEOREM CONSISTENT APPROXIMATION OF THE LANGEVIN DYNAMICS MODEL

被引:3
作者
Ma, Lina [1 ]
Li, Xiantao [1 ]
Liu, Chun [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
molecular dynamics; Langevin dynamics; fluctuation-dissipation theorem; NUMERICAL-INTEGRATION; MOLECULAR-DYNAMICS; ALGORITHMS; EQUATIONS;
D O I
10.4310/CMS.2017.v15.n4.a13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical method for solving the Langevin dynamics model. Rather than the trajectory-wise accuracy, we focus on the consistency to the equilibrium statistics at the discrete level. A discrete fluctuation-dissipation theorem is imposed to ensure that the statistical properties are preserved.
引用
收藏
页码:1171 / 1181
页数:11
相关论文
共 27 条
[1]  
Allen M. P., 1989, Computer Simulation of Liquids
[2]  
[Anonymous], 2002, Molecular Modeling and Simulation
[3]   Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches [J].
Blanc, X. ;
Le Bris, C. ;
Legoll, F. ;
Patz, C. .
JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (02) :241-275
[4]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500
[5]   THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE [J].
Buckwar, E. ;
Riedler, M. G. ;
Kloeden, P. E. .
STOCHASTICS AND DYNAMICS, 2011, 11 (2-3) :265-281
[6]   Numerical methods for second-order stochastic differential equations [J].
Burrage, Kevin ;
Lenane, Ian ;
Lythe, Grant .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :245-264
[7]   Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements [J].
Dellago, C ;
Bolhuis, PG ;
Chandler, D .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (22) :9236-9245
[8]  
Deuflhard P., 2012, SCI COMPUTING ORDINA, P42
[9]   The elementary Gaussian processes [J].
Doob, JL .
ANNALS OF MATHEMATICAL STATISTICS, 1944, 15 :229-282
[10]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1979, 58 (10) :2289-2299